

Unidad de Economía Agroalimentaria

Modelos de Predicción Aplicados a Series de Precios Agrarios

Ana I. Sanjuán

Documento de Trabajo 06/03

Índice

Introducción	1
1. Modelización	5
1.1. Propiedades estocásticas univariantes	13
2. Evaluación de Predicciones	
2.1. Medidas de Precisión2.2. Contrastes de comparación de calidad en lapredicción	
3. Aplicación empírica	33
3.1. Series de precios y sus fuentes 3.2. Contrastes de raíz unitaria 3.3. Modelización univariante: ARIMA 3.4. Modelización multivariante 3.4.1. Modelos VAR 3.4.2. Modelo de Corrección del Error (VECM)	
3.5. Evaluación de predicciones	
4. Conclusiones	
Anexos	117

Índice de Cuadros

Cuadro 0. Saldo de la balanza comercial entre España y el resto de países de la UE	35
Cuadro 1. Contrastes de Raíz Unitaria	39
Cuadro 2. Resumen de los modelos ARIMA identificados	43
Cuadro 3. Resumen de los outliers identificados y utilizados en el análisis de	
intervención	44
Cuadro 4. Estimación y Verificación de modelos ARIMA. Sector Vacuno	46
Cuadro 5. Estimación y Verificación de modelos ARIMA. Sector Ovino	46
Cuadro 6. Estimación y Verificación de modelos ARIMA. Sector Porcino	47
Cuadro 7. Estimación y Verificación de modelos ARIMA. Sector Pollo	47
Cuadro 8. Estimación y Verificación de modelos ARIMA. Sector Cebada	48
Cuadro 9. Estimación y Verificación de modelos ARIMA. Sector Maíz	48
Cuadro 10. Estimación, contraste y diagnóstico de los Modelos VAR. Sector Vacuno.	52
Cuadro 11. Estimación, contraste y diagnóstico de los Modelos VAR. Sector Ovino	54
Cuadro 12. Estimación, contraste y diagnóstico de los Modelos VAR. Sector Porcino.	56
Cuadro 13. Estimación, contraste y diagnóstico de los Modelos VAR. Sector Pollo	57
Cuadro 14. Estimación, contraste y diagnóstico de los Modelos VAR. Sector Cebada.	58
Cuadro 15. Estimación, contraste y diagnóstico de los Modelos VAR. Sector Maíz	58
Cuadro 16. Estimación y contraste de los Modelos VECM. Sector Vacuno	62
Cuadro 17. Estimación y contraste de los Modelos VECM. Sector Ovino	63
Cuadro 18. Estimación y contraste de los Modelos VECM. Sector Porcino	65
Cuadro 19. Estimación y contraste de los Modelos VECM. Sector Pollo	65
Cuadro 20. Estimación y contraste de los Modelos VECM. Sector Cebada	65
Cuadro 21. Estimación y contraste de los Modelos VECM. Sector Maíz	66
Cuadro 22. Medidas de precisión de la predicción. Sector Vacuno	85
Cuadro 23. Medidas de precisión de la predicción. Sector Ovino	86
Cuadro 24. Medidas de precisión de la predicción. Sectores Porcino y Pollo	87
Cuadro 25. Medidas de precisión de la predicción. Sectores Cebada y Maíz	88
Cuadro 26. Estadístico Diebold-Mariano de contraste de igualdad en la precisión de la predicción. Sector vacuno	92
Cuadro 27. Estadístico Diebold-Mariano de contraste de igualdad en la precisión de la predicción. Sector ovino	93
Cuadro 28. Estadístico Diebold-Mariano de contraste de igualdad en la precisión de la predicción. Sector porcino	94

Cuadro 29. Estadístico Diebold-Mariano de contraste de igualdad en la precisión de la predicción. Sector pollo	94
Cuadro 30. Estadístico Diebold-Mariano de contraste de igualdad en la precisión de la predicción. Sector cebada	95
Cuadro 31. Estadístico Diebold-Mariano de contraste de igualdad en la precisión de la predicción. Sector maíz	95
Cuadro 32 Contraste de "Encompassing"	98
Cuadro 33. Combinación de predicciones. Ponderaciones estimadas	99
Cuadro 34. Contraste Pesaran & Timermann (1992) de predicción de signo. Vacuno	102
Cuadro 35. Contraste Pesaran & Timermann (1992) de predicción de signo. Ovino	103
Cuadro 36. Contraste Pesaran & Timermann (1992) de predicción de signo. Porcino y pollo	104
Cuadro 37. Contraste Pesaran & Timermann (1992) de predicción de signo. Cebada y maíz	105

Índice de Gráficos

Gráfico 1. Series de precios en el sector vacuno	36
Gráfico 2. Series de precios en el sector ovino	36
Gráfico 3. Series de precios en el sector porcino	36
Gráfico 4. Series de precios en el sector pollo	37
Gráfico 5. Series de precios en el sector Cebada	37
Gráfico 6. Series de precios en el sector maíz	37
Gráfico 7. Valor real, predicción estática y dinámica. Sector vacuno. Serie Pov_nac	68
Gráfico 8. Valor real, predicción estática y dinámica. Sector vacuno. Serie Poa_lbin	69
Gráfico 9. Valor real, predicción estática y dinámica. Sector ovino. Serie Poo_nac	70
Gráfico 10. Valor real, predicción estática y dinámica. Sector ovino. Serie Poo_eb	71
Gráfico 11. Valor real, predicción estática y dinámica. Sector porcino. Serie Pop_nac`	72
Gráfico 12. Valor real, predicción estática y dinámica. Sector pollo. Serie Popl_nac	73
Gráfico 13. Valor real, predicción estática y dinámica. Sector cebada. Serie Poc_nac	74
Gráfico 14. Valor real, predicción estática y dinámica. Sector maíz. Serie Pom_nac	75
Gráfico 15. Valor real y predicciones estáticas generadas por modelos alternativos. Sector vacuno. Serie Pov_nac	77
Gráfico 16. Valor real y predicciones estáticas generadas por modelos alternativos. Sector vacuno. Serie Pov_lbin	78
Gráfico 17. Valor real y predicciones estáticas generadas por modelos alternativos. Sector ovino. Serie Poo_nac	79
Gráfico 18. Valor real y predicciones estáticas generadas por modelos alternativos. Sector ovino. Serie Poo_eb	80
Gráfico 19. Valor real y predicciones estáticas generadas por modelos alternativos. Sector porcino. Serie Pop_nac	81
Gráfico 20. Valor real y predicciones estáticas generadas por modelos alternativos. Sector pollo. Serie Popl_nac	82
Gráfico 21. Valor real y predicciones estáticas generadas por modelos alternativos. Sector cebada. Serie Poc_nac	83
Gráfico 22. Valor real y predicciones estáticas generadas por modelos alternativos. Sector maíz. Serie Pom_nac	83

Introducción

El objetivo de este documento consiste en ofrecer modelos alternativos de predicción de los precios agro-ganaderos en origen, identificando aquellos que mejores predicciones proporcionan a corto y medio plazo (entre uno y seis meses hacia delante). Con ello, se pretende proporcionar una herramienta útil que ayude a los agentes de los sectores implicados a tomar sus decisiones. En concreto, se consideran series de precios del sector vacuno, ovino, porcino, avícola y cerealístico. En este último, se han elegido los dos cultivos más utilizados en la alimentación ganadera, maíz y cebada. Asimismo, dentro de los sectores vacuno y ovino, además del precio nacional, se trabaja con los precios en origen en el mercado aragonés, éstos son, el precio de vacuno en la lonja de Binéfar y el precio de cordero en la lonja del Ebro. El estudio de estas series, se enmarca en el proyecto financiado por el INIA RTA02-091.

El documento trabaja con dos tipos de modelos: modelos univariantes Autorregresivos Medias-Móviles (ARIMA); y modelos multivariantes, en dos vertientes, los modelos de Vectores Autorregresivos (VAR) y Modelos de Corrección del Error (VECM – *Vector Error Correction Model*). Los primeros, únicamente utilizan la información proporcionada por el propio pasado de la serie para predecir sus valores futuros. Los modelos multivariantes, por el contrario, incorporan la información proporcionada por otras series de precios.

El contexto actual en el que se desenvuelven los mercados agrarios está marcado por la adhesión de nuevos Estados miembros a la Unión Europea, la progresiva liberalización de los intercambios comerciales de productos agrarios acordada en las rondas de negociaciones de la Organización Mundial del Comercio (OMC), y la introducción de medidas en la Política Agraria Común (PAC) tendentes a favorecer un sector agrario más competitivo y en consonancia con las exigencias de los mercados. Es previsible, por tanto, asumir que la formación de precios en los mercados agrarios cada vez se vea más influida por parámetros no controlables por los productores, viéndose obligados a adoptar decisiones en un contexto de creciente incertidumbre. En este documento, mediante los modelos multivariantes, se explora la capacidad predictiva de precios en otros mercados internacionales y del precio al consumo. Cuando se modelizan conjuntamente series de precios agrarios correspondientes al mismo escalón comercial nos referiremos a relaciones o modelos horizontales, mientras que cuando

distintos escalones están implicados, al origen y al consumo, identificaremos estos modelos como de relaciones verticales.

Los modelos de relaciones espaciales de precios se justifican en la teoría económica en la noción de mercados integrados y la ley del precio único. Brevemente, esta teoría postula que, en mercados eficientes, caracterizados por libre el flujo de información y de inexistencia de barreras al comercio, los precios de bienes homogéneos en mercados distantes no pueden diferir en una cuantía superior al coste de transacción, el cual incluye fundamentalmente, el coste de transporte. Así, excesos de oferta en un mercado se exportan a otro mercado, haciendo que el precio de equilibrio en el mercado original suba, mientras que en el mercado de destino el precio de equilibrio interno, baje, lo que conduce eventualmente a la igualación de precios entre ambos mercados, o al equilibrio espacial. Obviamente, este comercio tendrá lugar siempre que el margen o diferencial de precios entre ambos mercados sea inferior (o igual al coste de transacción), pues sólo así compensa el trasladar mercancía desde el mercado excedentario al mercado deficitario (en el caso de igualdad al coste de transacción, existe una situación de indiferencia entre exportar o no). Estas premisas teóricas son aplicables tanto a mercados regionales como internacionales, aunque es predecible que existan más barreras no arancelarias al comercio entre países que entre regiones. A partir de esta noción teórica, la literatura empírica ha empleado normalmente el término "mercados integrados" para referirse, a mercados que pueden comerciar o no entre sí, pero cuyos precios están ligados, tal que cambios en el precio en un mercado origina reacciones en el precio del otro mercado. La magnitud de la reacción se interpreta como un indicador del grado de integración, entendiéndose que ésta es perfecta, cuando alcanza la unidad.

Las relaciones verticales de precios se justifican en los modelos que explican la formación del margen comercial, el cual viene definido, por la diferencia entre el precio al consumo y el precio en origen. Las series de precios al consumo representan el precio de equilibrio al que llega el mercado al detalle o en el que confluyen los oferentes y demandantes finales. La demanda final tiene dos componentes, la demanda primaria del producto agrario, el cual tras sufrir un proceso de transformación (normalización, empaquetado, despiece, transporte, etc...) llega al mercado detallista convertido en un alimento destinado al consumidor final. El segundo componente de la demanda final es la suma de todos los servicios añadidos al producto agrario desde que sale del mercado en origen hasta que llega al mercado al consumo. Por consiguiente, desplazamientos en la demanda final, que ocasionan cambios en el precio de equilibrio en el mercado detallista, provocan desplazamientos en la

demanda primaria, causando por tanto cambios en el precio en origen. Este mecanismo se denomina "demand pull" o tirón de la demanda. No obstante, también la secuencia de cambios puede producirse en el sentido inverso, de forma que desplazamientos en la oferta primaria del producto agrario (p.ej. por cambios climatológicos, tecnológicos, costes en los factores de producción, etc.) que ocasionan cambios en el precio en origen, repercuten en la oferta derivada de alimentos en el mercado detallista. Este mecanismo se conoce como "cost push" o "empuje del coste". Por último, cuando los desplazamientos en la demanda primaria al consumo se deban exclusivamente a cambios en la oferta de servicios que a su vez no incidan en el uso del producto agrario, el mercado al consumo puede estar totalmente inconexo del mercado en origen, motivando que cambios en el precio al consumo no se trasladen en absoluto a los precios en origen.

Tradicionalmente, la evaluación estadística de un modelo econométrico se concentra en el análisis de los residuos de un modelo ajustado. Sin embargo, son varios los estudios que aseguran que modelos que satisfacen plenamente las condiciones requeridas a los residuos y por tanto, reflejan un ajuste satisfactorio, funcionan mal en la predicción fuera de la muestra. Por tanto, parece que cuando el objetivo último de la construcción de un modelo sea predecir, es preciso hacer uso de elementos adicionales de juicio que los meramente estadísticos basados en el ajuste dentro de la muestra del modelo. En este documento, se repasan algunas de las medidas de evaluación de predicciones más ampliamente difundidas, así como distintos métodos o contrastes, que nos permitan elegir el modelo que mejor predice entre modelos alternativos, o en el caso en que no sea posible descartar ningún modelo, mostrar cómo se puede hacer uso de predicciones combinadas que mejoren los resultados predictivos.

El documento se estructura en cuatro secciones adicionales a esta introducción. En la primera, se presentan los métodos de análisis, distinguiendo entre la identificación de las propiedades estocásticas univariantes de las series de precios; y la identificación, estimación, y diagnóstico de los modelos ARIMA, modelos VAR y modelos VECM. En la segunda sección, se explica la generación y evaluación de las predicciones post-muestrales. En la evaluación de las predicciones, se repasan las medidas de precisión en la predicción y los contrastes de calidad en la predicción. Entre estos últimos, se distinguen los contrastes de igualdad en la precisión de la predicción; los contrastes de "encompassing"; y los contrastes de predicción de signo. Para la selección de estos contrastes, se ha hecho un uso intensivo de dos manuales recopilatorios, editados por Clements y Hendry, en 2000 y 2004, que nos han permitido aplicar aquellos tests consolidados en la literatura. La presentación de la

metodología no pretende ser exhaustiva, y remite al lector a los textos especializados. La cuarta sección se dedica a la aplicación empírica, siguiendo los mismos apartados que en la exposición metodológica. La última sección se dedica a enumerar las principales conclusiones.

1. Modelización

1.1. Propiedades estocásticas univariantes

<u>Definición</u>

Muchas series económicas y, en particular, los precios, se caracterizan por ser no estacionarias, quebrándose por tanto, un supuesto básico sobre el que se asienta la modelización econométrica. La no estacionariedad invalida los procedimientos de estimación y la inferencia que a partir de ellos se realiza.

Formalmente, una serie temporal y_t es **estacionaria** si se satisfacen las siguientes condiciones:

- (1) $E(y_t) = \mu$ para todo t = 1, 2, ..., n
- (2) $E[(y_t \mu)^2 = \gamma_0 \text{ para todo } t = 1, 2, ..., n]$

(3)
$$E[(y_t - \mu)(y_{t-k} - \mu)] = \gamma_k$$
 para todo $t = 1, 2, ..., n$; y para todo $k = ..., -2, -1, 0, 1, 2, ...$

donde μ , γ_0 y γ_p son valores finitos. Estas condiciones exigen que la media (1) y la varianza (2) de la serie sean constantes e independientes del tiempo; y que la covarianza (3) entre la serie en dos momentos del tiempo separados por un lapso temporal k sea constante e independiente del tiempo, si bien en general diferente de la covarianza para otros lapsos temporales de separación.

Nelson y Plosser (1982) distinguen dos tipos procesos no estacionarios: estacionario en tendencia (TS o *trend stationary*) y estacionario en diferencias (DS o *difference stationary*). Una serie TS es estacionaria en torno a una tendencia determinista, mientras que una DS necesita ser diferenciada para alcanzar la estacionariedad, donde diferenciar significa restar a cada valor en el periodo t el valor en el periodo anterior.

Este último tipo de series también se denominan integradas, definiéndose formalmente del siguiente modo: una variable y_t es integrada de orden d [I(d)] si tiene una representación ARMA (Autorregresiva-medias móviles) estacionaria, invertible y no determinista, tras haber sido diferenciada d veces (Engle y Granger, 1987, p.252). En el caso más frecuente, basta con una diferenciación para que la serie se convierta en estacionaria, en cuyo caso la serie es I(1) y se dice que tiene una raíz unitaria. Una serie TS, sin embargo,

basta con filtrarse por una tendencia determinista (una serie con valores 1,2,...,T) para convertirse en estacionaria.

Una serie estacionaria, también denominada integrada de orden 0 [I(0)] se caracteriza por: i) tener una varianza finita e independiente del tiempo que hace que la serie fluctúe entorno a su media; ii) poseer una memoria limitada de su comportamiento pasado, es decir, cualquier *shock* tiene únicamente un efecto transitorio; iii) tener autocorrelaciones que decaen rápidamente conforme aumenta el lapso temporal de separación; iv) no presentar intervalos en que deambule, de modo que el número de períodos que transcurren entre dos cruces consecutivos con su valor medio debe ser reducido (Dolado et al., 1990, p.251).

Una serie integrada de orden 1 o I(1), por el contrario, se caracteriza por: i) tener una varianza que depende del tiempo, tendiendo a infinito conforme avanza éste; ii) tener una memoria infinita, es decir, los *shocks* tienen un efecto permanente sobre los niveles de la serie; iii) cruzar raramente su valor medio y; iv) tener autocorrelaciones elevadas, próximas a 1, para cualquier lapso temporal de separación (Dolado et al., 1990, p.251).

La identificación del tipo de tendencia que rige las series, determinista o estocástica, es importante por tanto, para poder saber si un efecto imprevisto y no anticipado va a tener un efecto transitorio o permanente en el nivel de la serie, lo cual repercute en la incertidumbre o intervalo de confianza para las predicciones, siendo mayor en el caso de variables integradas o estacionarias en diferencias (Franses, 2000).

Además, si las series no son estacionarias, se pueden originar relaciones estadísticamente significativas entre variables (en niveles) generadas independientemente. Este problema fue bautizado por Granger y Newbold (1973) como 'regresión espuria'. Las regresiones espurias se caracterizan por un coeficiente de determinación (R²) elevado y unos residuos fuertemente autocorrelacionados, lo que se traduce en valores bajos del estadístico Durbin-Watson (DW). Estos autores señalan que un R² mayor que el DW es sintomático de que la regresión es espuria.

La solución normalmente adoptada cuando las series son integradas (siendo el caso más frecuente que sean I(1)), consiste en especificar los modelos con series diferenciadas. La solución mediante la diferenciación de las variables, sin embargo, conduce a la pérdida de la información sobre el largo plazo contenida en los niveles de las series. La cointegración, término acuñado y definido por Engle y Granger(1987), viene a reconciliar la estimación entre los niveles de las series con su no estacionariedad (ver sección 1.2.2).

Aunque desde un punto de vista explicativo, la adecuada identificación de la integrabilidad o estacionariedad de las series permite identificar con más precisión las interrelaciones entre las variables, no parece existir consenso en la literatura sobre su incidencia en la capacidad y calidad predictiva de los modelos. Por ejemplo, Harvey (1981) y Tiao y Tsay (1983), defienden que si se ajusta un modelo a unas series que no han sido diferenciadas correctamente, el efecto sobre la predicción es irrelevante. Asimismo, Brandner y Kunst (1990) concluyen que el coste de imponer incorrectamente restricciones de cointegración es mayor que el de no imponer cointegración en absoluto, recomendando la estimación de modelos en diferencias (VAR: Vector Autorregresivo). Más recientemente, experimentos de Monte Carlo realizados por Clements y Hendry (2000) apoyan la tesis de que la restricción de cointegración contribuye en escasa medida a mejorar las predicciones en términos de precisión sobre modelos con variables en diferencias, mientras que la mejora respecto a modelos con variables sin diferenciar y sin imponer la restricción de cointegración, es todavía más aparente en horizontes de predicción largos, al menos en sistemas bivariantes (pag.144).

En cualquier caso, la identificación de una serie como estacionaria o no, constituye un paso esencial en cualquier investigación sobre series temporales, ya que va a condicionar qué tipo de modelos van a resultar, a priori, más adecuados. A posteriori, se comprobará en qué medida la modelización que mejor se ajusta a las propiedades univariantes de las series, es capaz de arrojar mejores predicciones.

Las funciones de autocorrelación muestral (FAC) y autocorrelación parcial (FAP), elementos esenciales en la metodología Box-Jenkins, constituyen una primera herramienta útil para discernir si las series son estacionarias o no. Los coeficientes de autocorrelación muestral (r_k) expresan la correlación existente entre dos valores de la serie temporal (y_t) , distanciados k períodos. Cuando el tamaño muestral (T) es grande respecto a k, dicho coeficiente se calcula mediante la siguiente expresión:

$$r_{k}(y_{t}) = \frac{\sum_{t=k+1}^{T} (y_{t} - \overline{y})(y_{t-k} - \overline{y})}{\sum_{t=1}^{T} (y_{t} - \overline{y})^{2}} \qquad k=0, 1,...$$
 (1)

La FAP toma, para cada instante t y cada entero k, un valor igual a la correlación entre y_t e y_{t-k} ajustada por el efecto de los retardos intermedios. El primer valor de la FAC y FAP de

cualquier proceso estocástico coinciden y son iguales a la unidad. En procesos estacionarios, ambas funciones decrecen rápidamente hacia cero, mientras que en procesos integrados la FAC decrece lentamente a partir de un valor inicial próximo a la unidad, y la FAP se anula para órdenes (k) superiores a uno, en el que adopta un valor también próximo a la unidad.

Contrastes de Raíz Unitaria

Los tests de raíz unitaria más conocidos y utilizados son los de Dickey-Fuller (1979,1981) (DF) y Philips y Perron (1988) (PP). Sin embargo, la literatura está repleta de sucesivas ampliaciones y mejoras de estos contrastes. En este trabajo, se han aplicado tres tests que responden a características diferenciales en su concepción, y que han sido desarrollados con posterioridad a los más habituales en la literatura empírica. Estos tests son: la modificación del test PP desarrollada por Ng y Perron (2001) que contrasta la hipótesis nula de raíz unitaria, el test KPSS (Kwiatkowski, Philips, Schimidt y Shin, 1992) que contrasta la hipótesis nula de estacionariedad; y el test Perron(1997) que contrasta la hipótesis nula de raíz unitaria con cambio estructural frente a la alternativa de estacionariedad en torno a una tendencia segmentada. Este último se aplica a las series de vacuno, por entender que han podido estar sometidas a un cambio estructural debido a la irrupción de la EEB, que podría inducir hacia la aceptación espuria de raíz unitaria. No obstante, todos ellos se basan en los principios básicos establecidos en el test de Dickey-Fuller, por lo que se expone a continuación, brevemente, las principales características de cada estadístico.

Dickey-Fuller (DF)

El test de Dickey y Fuller es probablemente el más utilizado, en parte por su sencillez y en parte porque fue uno de los primeros en desarrollarse. La forma más sencilla parte de la estimación de:

$$y_t = \rho y_{t-1} + \varepsilon_t \tag{2}$$

o, restando y_{t-1} a ambos lados de la igualdad:

$$\Delta y_t = (\rho - 1) y_{t-1} + \varepsilon_t \operatorname{con} \varepsilon_t \sim N(0, \sigma^2)$$
(3)

Añadiendo elementos deterministas para aislar el efecto de una deriva (o constante μ) y una tendencia determinista (t) se obtiene el modelo más general:

$$\Delta y_t = \mu + \beta t + \alpha y_{t-1} + \varepsilon_t \tag{4}$$

que permite contrastar la hipótesis nula más común en la práctica, de que el proceso generador de los datos contiene una tendencia estocástica frente a la alternativa de ser estacionario en tendencia (Harris y Solis, 2003, p.45). El modelo en (3) se estima por Mínimos Cuadrados Ordinarios. La hipótesis nula de raíz unitaria es equivalente a: H_0 : $\alpha = 0$, frente a la alternativa de estacionariedad H_A : $\alpha < 0$. El estadístico del contraste es la t-ratio del parámetro α , que no sigue una distribución estándar, derivada por Dickey y Fuller(1981), con posteriores ampliaciones de MacKinnon (1991), para cualquier tamaño muestral. Los valores críticos se pueden consultar en cualquier manual de series temporales posterior a estas fechas.

En presencia de autocorrelación en los residuos, el estadístico DF no converge hacia la distribución tabulada. En respuesta a este problema, surgieron inicialmente dos alternativas: una paramétrica, dando lugar al contraste conocido como Dickey-Fuller Aumentado (ADF) y otra no paramétrica, debida a Philips (1987) y Philips y Perron(1988), a la que nos referiremos como PP.

Dickey-fuller Aumentado (DFA)

El DFA consiste en aumentar la expresión en (3) por retardos de Δy_t :

$$\Delta y_{t} = \mu + \beta t + \alpha y_{t-1} + \sum_{i=1}^{p} \Delta y_{t-i} + \varepsilon_{t} \quad \text{con } \varepsilon_{t} \sim N(0, \sigma^{2})$$
 (5)

La hipótesis nula relevante de raíz unitaria sigue siendo H_0 : $\alpha = 0$ y los mismos valores críticos pueden ser utilizados (asintóticamente). Un elemento clave es la decisión sobre el número de retardos de Δy_t a incluir. Éste debe ser lo suficientemente amplio como para evitar la correlación serial de los residuos y asegurar que éstos sean ruido blanco. Sin embargo, un número bajo puede conducir a un sobre-rechazo de la hipótesis nula cuando es cierta (problema de tamaño), mientras que un número excesivo, puede conducir a sobre-aceptar la hipótesis nula y por tanto, a problemas de potencia. En la literatura existen distintas propuestas para seleccionar el número de retardos (ver por ejemplo, Harris y Solis, 2000, p.49). No nos detendremos en ellas dado que este test no ha sido utilizado en la aplicación empírica.

Philips-Perron (PP)

Philips (1987) y Phillips y Perron (1988) (PP) sugieren una corrección no paramétrica al test DF para hacerlo compatible con la presencia de autocorrelación y heteroscedasticidad

en la perturbación, asumiendo un proceso general ARMA (p,q) para los residuos. Así, en lugar de añadir retardos en la regresión del contraste, se corrige la t-ratio del parámetro α , de forma que se elimine el sesgo inducido por la presencia de autocorrelación en los residuos. Este sesgo existe cuando $T\to\infty$, la varianza poblacional $\sigma^2=E(T^{-1}S_T^2)$ difiere de la varianza de los residuos en la ecuación (3): $\sigma_\epsilon^2=T^{-1}\sum_{i=t-1}^T E(\epsilon_t^2)$. Estimadores consistentes de estas varianzas son, respectivamente:

$$S_{T1}^{2} = T^{-1} \sum_{t=1}^{T} \varepsilon_{t}^{2} + 2T^{-1} \sum_{t=1}^{I} (1 - j(1+1)^{-1}) \sum_{t=j+1}^{T} \varepsilon_{t} \varepsilon_{t-j}$$

$$S_{\varepsilon}^{2} = T^{-1} \sum_{i=t-1}^{T} \varepsilon_{t}^{2}$$
(6)

donde l es el parámetro de truncamiento que debe garantizar la ausencia de autocorrelación en

los residuos. Banerjee (1995) aconseja utilizar la expresión
$$l_k = \text{ent} \left[k \left(\frac{T}{100} \right)^{1/4} \right]$$
 con valores $k = 1$

4 ó 12, como parámetro de truncamiento. El estadístico PP se obtiene transformando los valores del estadístico DF (ver Perron, 1988, para el contraste de la hipótesis nula de tendencia estocástica frente a la alternativa de estacionariedad en tendencia). El test PP sigue la misma distribución asintótica que el DF, por lo que se utilizan los mismos valores críticos.

Una de las críticas comunes a los tests DF, ADF y PP es su escasa capacidad para discriminar entre la hipótesis nula y la alternativa en determinadas circunstancias. Tal es el caso en muestras finitas, si bien, el aumento de la frecuencia de los datos puede contribuir a amortiguar el efecto, según el resultado de Choi y Chung (1995). Una segunda circunstancia que afecta a estos tests es la presencia de componentes medias móviles (MA) con parámetro próximo a 1 en el proceso generador de los datos. En este caso, estos tests tienden a sobre-rechazar la hipótesis nula, sugiriendo que la serie es estacionaria cuando no lo es. Este resultado se agrava en el test PP si el parámetro MA es negativo (Schwert 1989, Perron y Ng 1996). Asimismo, Perron (1989) y otros autores demuestran que el test DFA tiende a sobre-aceptar la hipótesis nula cuando se ha producido algún cambio estructural en los elementos determinísticos del proceso generador de los datos. La presencia de rupturas estructurales reduce la potencia del test DFA, sugiriendo que la series es I(1) cuando en realidad es estacionaria en torno a una tendencia segmentada. La modificación de Ng y Perron (2001) viene a solventar el problema de tamaño en

presencia de componentes MA de los tests DFA y PP, mientras que el test de Perron(1997) trata de aliviar el problema de falta de potencia del test DFA cuando la serie ha estado sometida a cambios estructurales.

Ng y Perron (2001)

Ng y Perron (2001) han desarrollado un procedimiento de contraste que incorpora, por un lado, un nuevo criterio de información para seleccionar el número de retardos (parámetro de truncamiento) [Criterio de Información de Akaike Modificado], y por otro, el filtrado de las series mediante Mínimos Cuadrados Generalizados para eliminar la tendencia (*de-trending*). La batería de estadísticos que los autores proporcionan presenta mejores propiedades en términos de tamaño y potencia. Los valores críticos han sido tabulados por los autores.

Perron (1997)

El estadístico propuesto por Perron (1997) es del tipo DFA, pero en el que se incluyen variables *dummy* que captan un posible cambio en tendencia y/o nivel. A diferencia del estadístico previo de Perron (1989), Perron (1997) endogeneiza el punto de ruptura. En presencia de un cambio en el nivel de la serie (denominado Modelo IO o *Innovational Outlier*), la regresión del contraste es:

$$\Delta y_{t} = \mu + \theta DU_{t} + \beta t + \phi DTb + \alpha y_{t-1} + \sum_{j=1}^{p} \gamma \Delta y_{t-j} + \epsilon_{t} \quad con \ \epsilon_{t} \sim N(0, \sigma^{2}) \tag{7}$$

donde μ es una constante; t es una tendencia; DU_t es una variable que representa el cambio de media: DU_t =1 si t>Tb y 0 en otro caso, siendo Tb el punto de ruptura; DTb_t = 1 si t=Tb+1 y 0 en otro caso. La hipótesis nula de no estacionariedad es Ho: α =0, frente a la alternativa H_A : α <0. El punto de ruptura Tb se determina endogenamente, es decir, se determina dentro del modelo. Así, la regresión se estima de forma iterativa para valores alternativos de Tb en el intervalo δT <Tb<T- δT , donde δ es un porcentaje del tamaño muestral (normalmente 0.15), que se excluye, del principio y final de la muestra. Esto significa que, para cada valor alternativo de Tb, se calcula la t-ratio de α , así como de los elementos deterministas. Perron (1997) ofrece tres alternativas para seleccionar el punto de ruptura óptimo: el correspondiente a aquél que minimiza el estadístico t sobre α ; aquél que minimiza el

estadístico t sobre el parámetro asociado con el cambio de constante en el modelo IO(1) (θ); o bien aquél que maximiza el valor absoluto de la t-ratio de θ .

KPSS

Kwiatkowski et al.(1992) han desarrollado un test conocido por las iniciales de sus autores, KPSS, que contrasta la hipótesis nula de estacionariedad (en tendencia) de una serie temporal frente a la alternativa de raíz unitaria. Parte de la descomposición de la serie como la suma de un paseo aleatorio ($r_t = r_{t-1} + u_t$ con $u_t \sim iid(0,\sigma_u^2)$), una tendencia determinista (t) y un error estacionario (ε_t):

$$y_t = r_t + t + \varepsilon_t \tag{8}$$

La hipótesis nula de estacionariedad de y_t equivale a la nulidad de la varianza σ_u^2 . Para llevar a cabo el contraste se utiliza la regresión auxiliar:

$$y_t = \mu + \delta t + e_t \tag{9}$$

Bajo el supuesto de estacionariedad de la serie y_t , la varianza de la suma parcial de los residuos $S_t = \sum_{i=1}^t e_i$ será I(0), mientras que será I(1) si la serie es estacionaria en diferencias. A partir de S_t y la varianza a largo plazo de e_t , igual a la utilizada en el estadístico PP (S^2_{Tl} en (4)), se formula el estadístico multiplicador de Lagrance LM:

$$KPSS = T^{-2} \frac{\sum_{t=1}^{T} S_{t}^{2}}{S_{TI}^{2}}$$
 (10)

La distribución de este estadístico no es estándar, y ha sido tabulada por los autores del test. Estos autores demuestran que para valores altos del parámetro de truncamiento (1) se reduce la potencia del contraste, especialmente en muestras reducidas. Para 1=0, por el contrario, el tamaño empírico obtenido por simulación del estadístico es muy próximo al teórico, incluso para muestras pequeñas.

1.2. Modelos univariantes: ARIMA

Los modelos ARIMA (Autorregresivos medias-móviles) son una herramienta de predicción univariante consolidada en la literatura, y forman parte de la conocida como metodología Box-Jenkins, debido a que su aparición se debe a estos autores (Box y Jenkins, 1970).

Genéricamente, un modelo ARMA(p,q) se representa como:

$$\phi_{p}(L)y_{t} = \theta_{q}(L)\varepsilon_{t} \tag{11}$$

donde:

 $\phi_p(L) = 1$ - $\phi_1 L$ - $\phi_2 L$ - ... - $\phi_p L^p$, se denomina polinomio AR (autorregresivo) de orden p. Las ponderaciones de cada retardo son los parámetros ϕ_1 ... ϕ_p , y reflejan en qué medida y_t depende de su pasado;

 $\theta_q(L) = 1 + \theta_1 L + \theta_2 L^2 + ... + \theta_q L^q$, denominado polinomio MA (medias móviles) de orden q; L^k : operador retardo, tal que $L^k y_t = y_{t-k}$;

y_t: serie temporal a modelizar y que cumple con el requisito de ser estacionaria;

 ϵ_t : ruido blanco (serie temporal con media igual a cero, varianza constante, y covarianzas nulas para cualquier lapso temporal), variable no observada.

Cuando la serie y_t necesita ser diferenciada para convertirse en estacionaria, en la expresión del modelo, y_t se re-emplaza por $\Delta^d y_t$ (para d=1, $\Delta^d y_t = y_t - y_{t-1}$). En este caso el modelo se denomina ARIMA(p,d,q), Autorregresivo medias móviles integrado, de orden (p,d,q), donde p indica el orden del polinomio autorregresivo, q del polinomio medias móviles y d el grado de diferenciación que hay que aplicar a la serie temporal para convertirla en estacionaria. Asimismo, el modelo ARIMA se puede ampliar para incluir la modelización del componente estacional de la serie: ARIMA(p,d,q) ×ARIMA(P,D,Q)_s, y que adopta la expresión general:

$$\phi_{p}(L)(1-L)^{d}\phi_{p}{}^{s}(L)(1-L)^{D}y_{t} = \theta_{q}(L)\theta_{Q}{}^{s}(L)\epsilon_{t}$$
 (12)

La metodología Box-Jenkins consiste en ajustar un modelo ARIMA $(p,d,q) \times ARIMA(P,D,Q)_s$ a una serie temporal, que permita posteriormente realizar predicciones, y consta de cuatro etapas: Identificación, Estimación, Verificación y Predicción.

a. Identificación

Una característica diferenciadora del modelo ARIMA es que su adecuación para describir una serie temporal específica puede ser reconocida a través de características o regularidades empíricas que presentan los datos, las cuales se resumen en la función de autocorrelación (FAC) y autocorrelación parcial (FAP) (Franses, 2000, p.42). Existen, por tanto, unas funciones teóricas, que comparadas con las calculadas a partir de los datos empíricos, permiten identificar en una primera etapa los parámetros p,d y q. En cualquiera de los numerosos manuales de series temporales se pueden consultar las características teóricas de las FAC y FAP de cada posible modelo alternativo (p.ej. Aznar y Trívez, 1993; Pulido y López, 1999).

b. Estimación

El problema de la estimación se centra en encontrar en (10) los valores de los parámetros ϕ_i y θ_i (y su correspondiente parte estacional si existe) que minimizan la suma residual $SR = \sum_{t=1}^{T} \epsilon_t^2$. Existe un variado conjunto de rutinas o procedimientos para estimar modelos ARIMA. Esto se debe a que, los valores retardados de los residuos ϵ_t en el componente MA son variables no observables y, por tanto, tienen que ser estimados también. En este trabajo utilizamos la rutina de optimización no lineal Gauss-Newton, que es la implementada en el paquete estadístico RATS.

c. Verificación

Un requisito de un modelo ARIMA es que los residuos sean aproximadamente ruido blanco. De no ser así, el modelo no estaría recogiendo parte de la dinámica existente en la serie. Los estadísticos de diagnóstico de los residuos habitualmente utilizados, y aplicados en este trabajo son:

i) LB: Test *portmanteau* de Ljung y Box (1978), contrasta ausencia de autocorrelación hasta de orden m, y tiene la siguiente expresión:

LB(m) = T(T+2)
$$\sum_{k=1}^{m} (T-k)^{-1} r_k^2(\hat{\epsilon}) \sim \chi_{m-(p+P+q+Q)}^2$$
 (13)

donde: T es el número de observaciones; r_k es la autocorrelación de los residuos estimados $(\hat{\epsilon})$ de orden k: $r_k(\hat{\epsilon}) = \left[\sum_{t=k+1}^T \hat{\epsilon}_t \hat{\epsilon}_{t-k}\right] / \left[\sum_{t=1}^T \hat{\epsilon}_t^2\right]$. El estadístico LB(m) se distribuye asintóticamente como una chi-cuadrado con grados de libertad igual al orden de autocorrelación máximo contrastado (m) corregido por el número de parámetros del modelo (Franses y van Dijk, 2000, p.34).

ii) BJ: Bera-Jarque (1982) contrasta la hipótesis de normalidad. Sea m_j el momento de orden j de los residuos, definido como: $m_j = \frac{1}{n} \sum_{t=1}^T \hat{\epsilon}_t^j$, el coeficiente de asimetría (skewness) se calcula como: $SK = \frac{m_3}{\sqrt{m_2^3}} y$ el de curtosis (kurtosis): $K = \frac{m_4}{m_2^2}$. La distribución normal tiene un coeficiente de asimetría igual a 0 y de curtosis igual a 3. Bajo la hipótesis nula de normalidad (y ausencia de autocorrelación en los residuos), el coeficiente de asimetría estandarizado $\sqrt{T/6} \cdot SK$ y de curtosis $\sqrt{T/24} \cdot (K-3)$, son independientes y se distribuyen asintóticamente

como una Normal estándar N(0,1). El test Jarque-Bera de normalidad combina ambos componentes para ofrecer un test conjunto de normalidad. Este estadístico sigue una

distribución chi-cuadrado con dos grados de libertad, y se calcula como:

$$JB = \frac{T}{6}SK^{2} + \frac{T}{24}(K - 3)^{2} \sim \chi_{2}^{2}$$
 (14)

El rechazo de la hipótesis de normalidad puede reflejar la presencia de *outliers* (datos atípicos) o de heteroscedasticidad en los residuos (varianza no homogénea).

iii) ARCH test: Engle(1982), contrasta la hipótesis nula de ausencia de estructura Autorregresiva Condicional Heteroscedástica en los residuos. El test consiste en hacer una regresión de los residuos elevados al cuadrado sobre una constante y q retardos de los residuos al cuadrado. El estadístico se calcula como:

$$ARCHtest = (T - q) \cdot R^2 \sim \chi_q^2$$
 (15)

donde R^2 es el coeficiente de determinación obtenido en la regresión auxiliar.

Para realizar predicciones fuera de la muestra, se esperaría que el comportamiento de la serie temporal en periodos posteriores se mantenga similar al previo y que ha servido de base para estimar el modelo ARIMA. Sin embargo, si la serie sufre algún cambio estructural en el período muestral, es preciso incorporar estas rupturas, pues de lo contrario, la precisión de las predicciones peligra. De lo expuesto se deduce que, cuando se utilizan los modelos ARIMA con fines predictivos es muy importante, detectar y corregir posibles observaciones atípicas, que en buena medida pueden estar reflejando cambios estructurales motivados por condicionantes del entorno económico. La incorporación de la modelización de los valores atípicos se conoce como análisis de intervención.

Del proceso de identificación, estimación y verificación, pueden resultar varios modelos factibles. Para seleccionar entre modelos alternativos, habitualmente se utilizan criterios de información, avanzados por Akaike (1974) y Schwarz (1978), AIC y SIC, respectivamente. Sus expresiones son:

$$AIC(k) = T \log \hat{\sigma}_{ML}^{2} + 2npar$$

$$SIC(k) = T \log \hat{\sigma}_{ML}^{2} + npar \log T$$
(16)

donde npar es el número de parámetros estimados en el modelo ARIMA; $\hat{\sigma}_{ML}^2 = SR/T$, siendo SR la suma residual (la suma del cuadrado de los residuos), y T el número de observaciones (utilizado en la estimación del modelo). Se elige el modelo con el número de parámetros k que minimiza estos criterios. El SIC penaliza la inclusión de regresores adicionales en mayor medida que el AIC, por lo que normalmente, el modelo seleccionado mediante el SIC tiene menos parámetros que el seleccionado por AIC.

d. Predicción

Las predicciones h períodos hacia delante mediante modelos ARMA se pueden derivar mediante recursivas sustituciones en la expresión del modelo, que se pueden consultar en los manuales sobre el tema (ej. Franses, 2000; Aznar y Trívez, 1993).

1.3. Modelos multivariantes: VAR y VECM

El modelo de Vectores Autorregresivos (VAR) es un sistema de ecuaciones simultáneas en el que cada una de las variables se explica por sus propios valores pasados y los del resto de variables del sistema. Es decir, no se admiten restricciones a priori y todas las variables son consideradas endógenas.

Un modelo VAR se puede expresar matricialmente como:

$$Yt = \mu + \Psi D_t + A_1 Y_{t-1} + \dots + A_p Y_{t-p} + u_t$$
 (17)

donde:

Y_t: vector columna de series (precios), de orden k×1 (k es el número de series en el sistema, igual al número de ecuaciones)

μ : vector de constantes, también puede incluir una tendencia determinista;

D_t: vector de variables ficticias (ej. estacionales, impulso, escalón, etc...);

 u_t : vector de perturbaciones aleatorias, con matriz de varianzas y covarianzas Σ_u , normales independientes e idénticamente distribuidos: $u_t \sim niid(0, \Sigma_u)$

 A_i : matriz de orden k×k para i=1,..., p

p : número de retardos

Al diseñar el modelo (17), deben adoptarse un conjunto de decisiones sobre los elementos deterministas y el número de retardos a incluir. El análisis univariante previo y la obervación de las series originales y en diferencias pueden ayudar a decidir el primer punto, mientras que en la selección del número de retardos, normalmente se utiliza el criterio de información de Akaike (AIC) o Schwarz (SIC), expuestos en (16).

Los parámetros del modelo VAR se estiman por MCO, dado que este método proporciona estimaciones consistentes y eficientes. Al igual que en la estimación de los modelos ARIMA, es preciso el análisis y diagnóstico de los residuos. En la parte empírica, se aplican los mismos estadísticos expuestos para el caso de los modelos univariantes.

El análisis de la información proporcionada por los modelos VAR suele hacerse habitualmente mediante el uso de dos herramientas, las funciones impulso-respuesta y la descomposición de la varianza del error de predicción, que no obstante no vamos a aplicar en este trabajo, dado que el objetivo se centra en la evaluación de predicciones más que en la

extracción del máximo de información proporcionada por los modelos estimados.

La expresión del VAR en (17) se puede reformular como un Modelo de Corrección del Error (*Vector Error Correction Model* – VECM):

$$\Delta Y_{t} = \mu + \Psi D_{t} + \Gamma_{1} \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} - \Pi Y_{t-1} + u_{t}$$
 (18)

donde:

 $\Delta Y_t = Y_{t-1}$

 Γ_i = matriz de orden k × k de los parámetros a corto plazo, i = 1, ..., p-1

 Π = matriz de orden k × k de los parámetros a largo plazo

Entre los coeficientes del VECM y el VAR existe la siguiente equivalencia:

$$\Gamma_1 = -\sum_{i=j+1}^{p} A_i \quad \text{con i=1,...,p-1}$$
 (19)

$$\Pi = I_k - \sum_{i=1}^p A_i$$

La matriz Π proporciona información sobre las relaciones a largo plazo existentes entre las variables Y_t , de modo que el rango de esta matriz determina el número de relaciones de cointegración. En las matrices Γ_i se recogen los ajustes dinámicos de las variables a corto plazo.

El VECM permite discernir entre la estacionariedad alcanzada mediante la diferenciación y obtenida mediante combinaciones lineales entre las variables. Si las series de precios en Y_t son integradas de orden [I(1)], la expresión anterior estará equilibrada si los precios están cointegrados, es decir, si ΠY_{t-1} es estacionario.

La existencia de cointegración entre un conjunto de precios implica que una regresión lineal entre ellos es estacionaria y por tanto, fluctúa en torno a una media con una varianza constante. Esta característica se interpreta como la existencia de un equilibrio a largo plazo entre las series de precios de forma que, aunque individualmente puedan deambular aleatoriamente, existe un factor común entre ellos o una fuerza que los mantiene unidos en el largo plazo. De este modo, ante la presencia de series de precios I(1), la literatura empírica suele utilizar el concepto estadístico de cointegración como equivalente al concepto teórico de integración de mercados. Del mismo modo, cuando se estudia la transmisión vertical de

precios, se espera que precios en origen y al consumo evolucionen conjuntamente, al menos en el largo plazo.

Siguiendo el procedimiento de Johansen, contrastar la existencia de cointegración se reduce a contrastar el rango (r) de la matriz Π . Si r=k, Y_t es un vector de variables estacionarias y, por tanto, el estudio debería realizarse a partir de un VAR en niveles, y en este caso, una estimación del modelo por MCO sería eficiente; si r=0, entonces Π no contiene ninguna información sobre el largo plazo, y el modelo adecuado para proseguir el análisis sería un VAR en primeras diferencias; por último, si r < k, hay r combinaciones estacionarias entre las variables (r vectores de cointegración) lo que se interpreta como relaciones de equilibrio entre los precios.

El procedimiento de estimación máximo-verosímil permite, además, descomponer la matriz Π en dos matrices $k \times r$, tales que $\Pi = \alpha \beta$ '. Las columnas de α representan la velocidad de ajuste hacia el equilibrio. Asimismo, representan la ponderación de cada vector de cointegración. Las columnas de β forman las r combinaciones independientes entre las variables de Y_t , dando cuenta de la transmisión de precios en el largo plazo. Dado que se trata de un procedimiento consolidado en la literatura, se puede consultar en numerosos manuales sobre series temporales. En particular, Harris y Sollis (2003) realizan una excelente aproximación al tema no excesivamente técnica.

Para contrastar el número de vectores de cointegración, Johansen (1988) y Johansen y Juselius (1990) proponen dos estadísticos pertenecientes a la familia de la razón de verosimilitud: traza y máximo valor propio. En este trabajo utilizaremos el primero por presentar mejores propiedades (Harris y Solis, 2003). El estadístico de la traza contrasta que como máximo existen r₀ vectores de cointegración, y los valores críticos han sido tabulados por Johansen y Juselius (1990) y Osterwald-Lenum (1992). Éstos varían en función del rango de cointegración que se contrasta y de los elementos deterministas incluidos en el modelo (salvo que se trate de ficticias estacionales centradas, cuya suma para cada año es igual a cero, y que no afectan a la distribución de los estadísticos). El contraste se lleva a cabo de una manera secuencial, de tal forma que, en la hipótesis nula, r abarca valores comprendidos desde 0 hasta k. La secuencia termina cuando no sea posible rechazar la hipótesis nula.

Una vez determinado el número de vectores de cointegración en el modelo, el procedimiento de Johansen ofrece la posibilidad de contrastar hipótesis sobre los parámetros

del largo plazo β y α . En este trabajo, tan sólo nos vamos a centrar en las siguientes hipótesis:

i. La pertenencia de cada precio al espacio de cointegración. En el caso concreto de k=2, r=1 y una constante en el largo plazo, la hipótesis nula se puede formular como: Ho: (μ β_1 β_2) = (* 0 *), donde * indica que el correspondiente parámetro no se restringe. El rechazo de esta hipótesis para cada uno de los precios integrantes del vector (vectores) de cointegración, implica que todos los precios del sistema están ligados en su evolución a largo plazo, o en otras palabras, mantienen una relación de equilibrio a la que son atraídos.

ii. La perfecta transmisión de cambios en los precios en el largo plazo: Ho: $(\mu \beta_1 \beta_2)$ = (* 1 -1). La aceptación de esta hipótesis implica que aumentos (disminuciones) de una unidad (1% si las series se expresan en logaritmos) provoca cambios de la misma magnitud (o porcentaje) en otro precio en el largo plazo, lo que se entiende es una cualidad de los mercados integrados (en la perspectiva horizontal) y eficientes en la transmisión de shocks (en ambas perspectivas, horizontal y vertical).

iii. La exogeneidad débil de cada precio respecto de la relación de equilibrio a largo plazo: Ho: $(\alpha_1 \ \alpha_2) = (0 \ ^*)$. La aceptación de esta hipótesis implica que el primer precio no reacciona ante desequilibrios en la relación de equilibrio a largo plazo. La aceptación de esta hipótesis para un precio suele interpretarse como una mayor autonomía en la evolución a largo plazo de dicho precio, lo que se interpreta como el ejercicio de liderazgo en el largo plazo.

Todas estas hipótesis se contrastan mediante la aplicación de ratios de verosimilitud, que comparan el máximo de la función de verosimilitud en el modelo libre de restricciones y el modelo que impone las restricciones expresadas en la hipótesis a contrastar. El estadístico del contraste se distribuye como una chi-cuadrado con tantos grados de libertad como restricciones se impongan.

2. Evaluación de Predicciones

2.1. Medidas de Precisión

La selección de un método de predicción entre varios alternativos requiere la obtención de varias predicciones, para cada horizonte de predicción evaluado (h), a partir de las cuales poder construir medidas de evaluación de predicción fuera de la muestra. En este documento, el interés gira en torno a la capacidad predictiva a corto y medio plazo, por lo que se han elegido horizontes temporales de uno, tres y seis meses hacia delante.

Sea T el número de observaciones muestrales utilizado en la estimación del modelo; m, el número de observaciones que se reservan para evaluar las predicciones; y n, el período desde el cual se realiza la predicción h períodos hacia delante, con n = T, T+1, ..., T+M-h+1. Al valor predicho para el período n+h, con información disponible en n, h períodos hacia delante, lo denominamos f_{i,n+h}. Así, por ejemplo, se pueden generar hasta M predicciones un período hacia delante, desplazando el conjunto de información desde n= T hasta n=T+M-1. Del mismo modo, se pueden obtener hasta M-2 predicciones tres períodos hacia delante, desplazando el conjunto de información desde n=T hasta n=T+M-5 predicciones seis períodos hacia delante, desplazando el conjunto de información desde n=T hasta n=T+M-6.

Adicionalmente, se pueden realizar predicciones dinámicas, basándose únicamente en la información disponible en T, el último período muestral. Así, para T+1 la predicción será equivalente a la predicción un período hacia delante realizada desde T; T+3, será equivalente a la predicción estática tres períodos hacia delante realizada desde T; hasta la predicción T+M, equivalente a la predicción realizada desde T M períodos hacia delante. Este mecanismo dinámico implica que a partir de T, se utilizan predicciones en lugar de valores reales, lo que contribuye a mayores errores de predicción. En este documento, se han realizado predicciones estáticas, 1, 3 y 6 meses hacia delante, así como predicciones dinámicas, con cada uno de los modelos considerados.

En este documento, se dispone de series mensuales de precios para el período que abarca desde enero de 1997 hasta diciembre de 2005 (108 observaciones). El período muestral para el que se ajustan los modelos alternativos, sin embargo, abarca desde enero de 1997 hasta junio de 2004 (T=90 observaciones), dejando por tanto 18 observaciones (M=18) para evaluar las predicciones, correspondientes al periodo julio de 2004 hasta diciembre de 2005.

El resultado es que disponemos de 18(M) predicciones un período hacia delante desde julio de 2004 hasta diciembre de 2005; 16 (M-2) predicciones tres períodos hacia delante, desde septiembre de 2004 hasta diciembre de 2005; y 13 (M-5) predicciones seis períodos hacia delante, desde diciembre de 2004 hasta diciembre de 2005.

Para predecir un período hacia delante con información disponible hasta T, se mantiene fijo el modelo previamente estimado. Sin embargo, para predecir desde n, con n>T, la práctica habitual es, o bien re-ajustar los parámetros estimados mediante algún procedimiento bien re-estimar el modelo incorporando la nueva información disponible. La primera opción se ha aplicado a los modelos VAR, mediante el filtro de Kalman, mientras que la segunda se ha aplicado a los modelos ARIMA y VECM. En estos últimos, sin embargo, se mantienen fijos los parámetros del largo plazo β.

Para comparar las predicciones arrojadas por modelos alternativos, se precisa de alguna medida que nos permita concluir qué método predice mejor. La calidad de la predicción tiene un componente cualitativo y otro cuantitativo. En la evaluación cualitativa se debe prestar atención a la existencia de algún error de predicción excesivamente elevado, o en fallos a la hora de detectar los puntos en los que la serie cambia de signo o tendencia. Desde un punto de vista cuantitativo, se precisa algún criterio o medida que nos permita cuantificar los errores de predicción y comparar entre modelos. Empezaremos por estos últimos.

Los métodos para evaluar y comparar las predicciones se basan en la definición de una función de coste, de forma que, a cada error de predicción (e_t) , calculado como la diferencia entre el valor real de la serie (y_t) y el predicho (f_t) le corresponde un coste $C(e_t)$. Se consideran características deseables de esta función de coste:

$$C(0) = 0$$
; y $C(e1) > C(e2)$ si $e1 > e2 > 0$ ó $e1 < e2 < 0$ (20)

Es decir, que cuando el error sea nulo, el coste también los sea; y que a mayor error en valores absolutos se le asigne un mayor coste. Obviamente, hay multitud de formas funcionales que cumplan estos requisitos, pero normalmente se supone que C(e_t) es función del cuadrado o del valor absoluto del error. Esto da lugar a las medidas de precisión de la predicción más habituales: Error Absoluto Medio, Error Cuadrático Medio (ECMP), el Error Porcentual Absoluto Medio, que son las que utilizaremos en la aplicación empírica. No obstante, a continuación mostramos algunas otras medidas que aparecen en los manuales sobre predicción para ofrecer un panorama más completo.

Dos medidas básicas a partir de las cuales se construyen las demás son el **Error Medio** y el **Error Absoluto Medio**:

$$EM = \frac{1}{M} \left[\sum_{t=1}^{M} e_t(h) \right] \qquad EAM = \frac{1}{M} \left[\sum_{t=1}^{M} |e_t(h)| \right]$$
 (21)

donde:

e_t(h) : error de predicción h períodos hacia delante, en el período t

M : número de predicciones: M=18 cuando h=1; M=16 cuando h=3, y M=13 cuando h=6.

Si para un modelo, el Error Medio es aproximadamente de la misma magnitud que el Error Absoluto Medio, el modelo predice repetidamente, bien por debajo (errores positivos) o bien por encima (errores negativos) de los valores reales. Si los errores positivos y negativos fuesen semejantes, el Error Medio tendería a anularse, y consecuentemente el Error Absoluto Medio sería muy superior.

Para evitar el problema de que los errores se compensen, es más frecuente utilizar el **Error Cuadrático Medio** (*Mean Squared Prediction error*) que viene definido por:

$$ECMP = \frac{1}{M} \left[\sum_{t=1}^{M} e_t(h)^2 \right]$$
 (22)

El Error Cuadrático Medio es una alternativa próxima al Error Absoluto medio, con la diferencia de que el primero asigna más peso a los errores más grandes.

Expresando los errores absolutos de predicción en términos porcentuales se obtiene el **Error Porcentual Absoluto Medio** de Predicción (*Mean Absolute Percentage Error*) y la **Mediana del Error Porcentual Absoluto,** EPAM y MEPA, respectivamente:

$$EPAM = \frac{1}{M} \left[\sum_{t=1}^{M} \frac{|e_t(h)|}{y_t} \times 100 \right] \quad \text{y MEPA} = Mediana \left[\frac{|e_t(h)|}{y_t} \times 100 \right]$$
 (23)

La ventaja de estas medidas es que no dependen de la escala o unidad de medida de la serie, pero debería ser utilizada solamente con series que toman valores no negativos y que

poseen un origen natural, característica que por otra parte comparten muchas series económicas, incluidos los precios (Fildes y Ord, 2004,p.327).

Otra medida es la **Raíz del Error Cuadrático Medio** de Predicción (*Root Mean Squared Prediction Error*):

$$RECM = \sqrt{\frac{1}{M} \left[\sum_{t=1}^{M} e_t(h)^2 \right]}$$
 (24)

Al comparar predicciones, sin embargo, es habitual que además de disponer de una batería de medidas de errores de predicción alternativas, también dispongamos de varias series que queremos predecir. En este enfoque multi-serie multi-medidas, es frecuente encontrar en la literatura medidas resumen, para cada horizonte temporal de predicción, para cada una de las series y para todas ellas en conjunto. Si se calculan estas medidas resumen de errores de predicción para un conjunto de series, las medidas que dependen de la escala, como por ejemplo, el Error Cuadrático Medio, no son aplicables. Normalmente, sin embargo, cuando se evalúan métodos competitivos haciendo uso de distintas series, las medidas más frecuentes son la media o la mediana del Error Porcentual Absoluto de Predicción.

2.2. Contrastes de comparación de calidad en la predicción

Al comparar la capacidad predictiva entre dos modelos aplicados a las mismas series temporales, un Error Cuadrático Medio (o cualquier otra medida de precisión) inferior no necesariamente implica un mejor comportamiento predictivo, dado que se desconoce si la diferencia entre ambos ECM es estadísticamente significativa o no. Además, también resulta interesante contrastar si cualquier reducción en el ECM se estadísticamente significativa (Harris y Solis, 2003, p.250).

Con este fin, se pueden encontrar muchos contrastes en la literatura que se pueden clasificar en cinco categorías: contraste sobre igualdad en la precisión de la predicción entre dos o más modelos; encompassing de modelos; eficiencia en la predicción; sesgo nulo en la predicción; y capacidad de predicción del signo (McCracken y West, 2004, p.300). No obstante, los contrastes sobre encompassing, eficiencia y sesgo nulo, suelen ir unidos. y los tratamos en un único epígrafe.

i) Igualdad en la precisión de la predicción entre modelos alternativos

A lo largo de esta sección, denominaremos y_t (t=T+1,...,T+M) a los valores reales de la variable y_t ; f_{1t} y f_{2t} , a dos series de predicciones obtenidas con dos modelos alternativos (t=T+1,...,T+M). Definimos el error de predicción $e_{it} = f_{it} - y_t$, con i=1,2. Sea la función de coste $C(e_{it})$, que como hemos visto en la sección anterior, normalmente es una función del cuadrado de lo errores, y la medida de precisión es el Error Cuadrático Medio. El diferencial en el coste entre las dos predicciones alternativas es: $d_t = C(e_{1t}) - C(e_{2t})$. Se supone que las dos predicciones son igual de precisas si el valor esperado del diferencial de coste es nulo para todo periodo t. Por tanto, la hipótesis nula a contrastar es $E(d_t) = 0$ para todo t.

Los primeros contrastes que se desarrollaron en la literatura, se construyeron bajo los siguientes supuestos (Mariano, 2004, p.286): la Pérdida o Coste es cuadrático; los errores de predicción son ruido blanco (media cero y ausencia de autocorrelación).

Bajo estos supuestos **Granger y Newbold** (1986) desarrollaron un contraste de igualdad en la precisión de la predicción. Sea: $x_t = e_{1t} + e_{2t}$ y $z_t = e_{1t} - e_{2t}$. La hipótesis nula de diferencial del coste nulo es equivalente a que la covarianza entre x_t y z_t es nula ya que: $cov(x_t, z_t) = E(e_{1t}^2 - e_{2t}^2)$. El estadístico del contraste es:

Granger y Newbold =
$$GN = \frac{r}{\left[(1 - r^2)/(M - 1) \right]^{1/2}} \sim t_{M-1}$$
 (25)

donde $r = x'z / [(x'x)(z'z)]^{1/2}$, siendo x y z, los vectores Mx1 que contienen x_t y z_t . Bajo la hipótesis nula de covarianza cero entre x_t y z_t , el estadístico GN se distribuye como una distribución t con M-1 grados de libertad. Dado que este test se basa en el supuesto de que los errores de predicción son ruido blanco, solo es aplicable a predicciones un período hacia delante.

Diebold y Mariano (1995) desarrollaron un test para contrastar la igualdad de la precisión en la predicción que flexibiliza los supuestos sobre los que se construyó el test de Granger y Newbold (1986) y otros posteriores que incluían algunas modificaciones (ej. Meese y Rogoff (1988)). Así, este contraste es válido con funciones de pérdida o coste no cuadráticas, aplicable a predicciones multi-periodo, a errores de predicción que no son ruido blanco.

Se generan M predicciones h períodos hacia delante con dos modelos alternativos, que dan lugar a dos series de errores de predicción, e_{1t} y e_{2t} . Se calcula el Error Cuadrático Medio

(ECM) como medida de la calidad de la predicción. La hipótesis nula de igualdad en la precisión de la predicción se formula como:

$$\begin{split} E[d_t] &= 0 \text{ donde } d_t = e_{1t}^{-2} - e_{2t}^{-2}, \text{ y E es la esperanza matemática. La media de la} \\ \text{diferencia entre los } ECM \text{ de ambos modelos } \overline{d} = \frac{1}{n} \sum_{t=1}^n d_t \text{ tiene como varianza asintótica} \\ \text{aproximadamente } V(\overline{d}) \approx \frac{1}{M} \bigg[\gamma_0 + 2 \sum_{k=1}^{h-1} \gamma_k \bigg], \text{ siendo } \gamma_k \text{ la auto-covarianza de orden } k \text{ de } d_t, \text{ y} \\ \text{que se estima como } \gamma_k = \frac{1}{M} \sum_{t=k+1}^M (d_t - \overline{d}) (d_{t-k} - \overline{d}) \,. \end{split}$$

El estadístico de Diebold y Mariano(1995) es:

$$DM \equiv Diebold - Mariano = \frac{\overline{d}}{\left[V(\overline{d})\right]^{1/2}} \sim N(0,1)$$
 (26)

Los autores demuestran mediante experimentos de Monte Carlo que el test funciona bien, incluso en muestran pequeñas, cuando los errores de predicción están autocorrelacionados, y cuando no siguen distribuciones normales. Sin embargo, tienen problemas de exceso de tamaño cuando el número de predicciones es reducido y las predicciones se hacen a dos o más periodos hacia delante.

Harvey, Leybourne y Newbold (1997) modifican el test anterior para mejorar las propiedades. Para ello, introducen un nuevo estimador de la varianza de la media del ECM que, a diferencia del de Diebold y Mariano (1995) es insesgado. El test es:

$$DM* = DM \bullet [[M+1-2h+h(h-1)/M]/M]^{1/2}$$
 (27)

El estadístico DM* se compara con los valores críticos de una t-Student con M-1 grados de libertad en lugar de con una Normal estándar. El estadístico modificado tiene mejores propiedades que el DM, para cualquier horizonte de predicción, y si los errores de predicción están autocorrelacionados o siguen distribuciones distintas a la normal.

ii) Encompassing, eficiencia y sesgo nulo

Un enfoque complementario a la hora de comparar las predicciones de dos modelos alternativos, exigiría, que las predicciones del modelo descartado (competitivo) mediante algunos de los contrastes anteriores, no incorporen información útil pero ausente en el modelo preferido. El término inglés "forecast encompassing" significa que las predicciones del modelo competitivo, por ejemplo, modelo 2, contienen información relevante y que está ausente del modelo a evaluar, modelo 1. Si no contiene tal información, entonces se dice que las predicciones del modelo 2 están "encompassed" o incluidas/incorporadas en las predicciones del modelo evaluado 1 (Harris y Solis, 2003, p.251). El objetivo, por tanto, consiste en encontrar un modelo que 'encompase' o incorpore la información proporcionada por los demás modelos alternativos, en el sentido de que sea capaz de explicar sus resultados y, por tanto, caracterizar las propiedades de las series al menos, tan bien como los modelos rivales (Clements y Hendry, 2000).

Los primeros autores que utilizaron implícitamente este concepto fueron Granger y Newbold (1973), quienes introdujeron el término "eficiencia condicional" de las predicciones. Una predicción es condicionalmente eficiente si la varianza del error de predicción de una combinación entre esta predicción y una predicción obtenida con un modelo competitivo alternativo, es igual o superior a la varianza el error de predicción original. Por tanto, refundiendo los dos conceptos, una predicción condicionalmente eficiente encompasses/incorpora la predicción del modelo competitivo.

Asimismo, el *encompassing* está estrechamente relacionado con la combinación de predicciones, introducida por Bates y Granger (1969). La idea de la combinación de predicciones es que si dos (o más) modelos de predicción están disponibles, una combinación ponderada de estas predicciones puede generar una predicción mejor. De este modo, la combinación de predicciones se justifica cuando no exista *encompassing*, mientras que si se acepta que un modelo *encompass* a un modelo competitivo, el segundo quedaría descartado al no poseer información relevante que permita superar la predicción del primer modelo.

Ambos conceptos, por tanto, son complementarios, y en la práctica, se integran y contrastan mediante el uso de regresiones entre las predicciones (o errores de predicción) de los modelos alternativos. Sean f_{1t} , f_{2t} la predicción un período hacia delante, obtenidas a partir de los modelos 1 y 2, respectivamente, siendo los correspondientes errores de

predicción e_{1t} y e_{2t} y la variable real y_t . **Granger y Ramanathan** (1984) sugieren una regresión como la siguiente:

$$y_t = \alpha_0 + \alpha_1 f_{1t} + \alpha_2 f_{2t} + \varepsilon_t \tag{28}$$

Una dificultad con esta regresión, es que habitualmente las series económicas, y en particular, las series de precios, son I(1), en cuyo caso estaríamos frente al problema de la regresión espuria e inferencias inválidas. Por ello, diversos autores (ej. Newbold y Harvey, 2004, p.271) sugieren sustituir los niveles de las series de valores reales y predicciones por sus diferencias (Δy_t , Δf_{1t} y Δf_{2t}), tanto en esta regresión como en las que se derivan de ella.

Sobre esta regresión inicial, Chong y Hendry (1986), observan que bajo la hipótesis nula de que las predicciones del modelo 1 incorporan/encompass las predicciones del modelo 2, α_1 y α_2 deberían ser 1 y 0, respectivamente. Si tal es el caso, este contraste se puede simplificar utilizando la t-ratio asociada al parámetro α_2 en la siguiente regresión:

$$e_{1t} = \alpha_0 + \alpha_2 f_{2t} + \varepsilon_t \tag{29}$$

Si las predicciones del modelo 1 *encompass*/incorporan las del modelo 2, entonces el coeficiente α_2 será 0, y la t-ratio se distribuye asintóticamente bajo la hipótesis nula como una normal. La lógica detrás de estos planteamientos es que, óptimamente, el error de predicción e_{1t} debería estar incorrelacionado con toda la información disponible cuando se realiza la predicción. La correlación entre este error e_{1t} con la predicción f_{2t} realizada con el modelo 2, implicaría que la información disponible al realizar esta segunda predicción tiene algún valor para anticipar la predicción hecha por el modelo 1.

Una dificultad adicional a la estimación de las regresiones (28) y (29) está relacionada con la probable presencia de autocorrelación y heteroscedasticidad en los residuos que invalidarían la inferencia que a partir de ellos se realiza, cuando el horizonte de predicción es superior a uno.

Los errores de predicción de predicciones óptimas un período hacia delante están no correlacionados ($E[e_n, e_{n+1}] = 0$) y por tanto, la estimación por MCO (mínimos cuadrados ordinarios) proporciona estimadores consistentes de los parámetros α . Sin embargo, para horizontes temporales superiores a uno, los errores de predicción óptima h periodos hacia delante siguen un proceso MA(h-1) (Newbold y Harvey, 2004, p.276), por lo que es inapropiado asumir que los errores en (28) y (29) sean ruido blanco. En estas condiciones, los

estimadores MCO son insesgados pero su matriz de varianzas y covarianzas es inconsistente, invalidando la inferencia.

Por lo que respecta a la heteroscedasticidad, Harvey et al.(1998) manifiestan que no es improbable que exista algún tipo de heteroscedasticidad condicional en la que la varianza de los residuos (Var[ε_tle1t - e2t]) dependa de la diferencia entre los errores de predicción de modelos alternativos, por ejemplo, debido a que no se satisfaga el supuesto de normalidad en los errores de predicción. Ambos problemas se pueden solventar utilizando correcciones a la estimación MCO que aporten una matriz de varianzas y covarianzas consistente, como por ejemplo, el método de Newey y West (1987), que es el que se aplicará en la parte empírica.

Una solución alternativa a la diferenciación cuando se está trabajando con series I(1) es la propuesta por Ericsson (1992). Este autor construye un test también basado en una regresión, pero que es compatible con predicciones generadas por modelos que incorporan relaciones de cointegración. Con series I(1), la predicción f_{2t} en la expresión (29) es I(1), mientras que los errores serán I(0), por lo que esta regresión está desequilibrada, y los estadísticos habituales seguirán distribuciones no estándar (Nótese sin embargo, que este desequilibrio no se da en la regresión inicial (28)). Por ello, sugiere que el contraste se lleve a cabo sobre la siguiente regresión:

$$e_{1t} = \alpha_0 + \alpha_1 (f_{2t} - f_{1t}) + \varepsilon_t \tag{30}$$

Si el parámetro $\alpha_1 = 0$, las predicciones del modelo 2 no poseen información ausente en la predicción del modelo 1, y por tanto, las predicciones del modelo 1 incorporan/encompass las del competitivo. El estadístico del contraste es la t-ratio sobre el parámetro α_1 , y se distribuye asintóticamente como una normal estándar.

Mincer y Zarnowitz(1969) introdujeron el test de eficiencia en la predicción. Este test se basa en la observación de que si la predicción se construye haciendo uso de toda la información disponible, entonces la predicción óptima (la de mínimo Error Cuadrático Medio) y el error de predicción, deberían estar incorrelacionados. En este caso, se puede utilizar la t-ratio asociada a la estimación del parámetro α_1 en la regresión:

$$e_{1t} = \alpha_0 + \alpha_1 f_{1t} + \varepsilon_t \tag{31}$$

Estos autores también introdujeron el contraste de sesgo nulo (también llamado media del error de predicción nula), en el contexto de eficiencia, y se traduce en contrastar que el parámetro α_0 en la regresión (31). A pesar de que esta propuesta data de 1969, numerosos

autores la han utilizado más recientemente, como Pagan y Schwert (1990) y West y Cho (1995). Nuevamente, en la regresión (31) se debería trabajar con las series de predicciones diferenciadas para evitar el problema de la regresión espuria.

Ericsson y Márquez (1993) retoman el concepto de sesgo nulo, pero lo integran en el contraste de *encompassing* en una regresión como la expuesta en (29), mientras que Diebold y López (1996) integra los tres conceptos, *encompassing*, sesgo nulo y eficiencia en el marco de la regresión de Granger y Ramanathan (1984) (28), contrastando conjuntamente (α_0 , α_1 , α_2) = (0,1,0). Nótese que en la regresión (31) se está imponiendo la ausencia de la predicción del modelo 2 (equivalente a α_2 = 0 en la regresión (28). Si a esta restricción, se añade el contraste (α_0 , α_1) = (0,1) de sesgo nulo y eficiencia, en el sentido de Mincer y Zarnowitz(1969), obtenemos un contraste equivalente a (α_0 , α_1 , α_2) = (0,1,0) en la regresión inicial (28), que es justamente el contraste que sugieren Diebold y López (1996).

Como señalan Clements y Hendry (2004, p.275) no parece existir unanimidad sobre cual debe ser la hipótesis nula a contrastar en cada una de las regresiones propuestas. Para simplificar los análisis, en este documento, nos regiremos por la propuesta inicial de Granger y Ramanathan (1984), estimando la regresión en (28).

Si los resultados del *encompassing* concluyen que no existe, significa que se pueden obtener ganancias significativas al combinar predicciones provenientes de modelos alternativos. Un método sencillo de combinación de predicciones y consolidado en la literatura, entronca con la regresión (28) propuesta por Granger y Ramanathan (1984), en la cual se restringe la constante a cero y la suma de ponderaciones entre predicciones de modelos alternativos a 1. Así, la expresión (28) se puede reformular como sigue:

$$y_{t} = \alpha_{1} f_{1t} + (1 - \alpha_{1}) f_{2t} + \varepsilon_{t}$$
(32)

y reordenando:

$$y_{t} - f_{2t} = \alpha_{1}(f_{1t} - f_{2t}) + \varepsilon_{t} \equiv e_{2t} = \alpha_{1}(f_{1t} - f_{2t}) + \varepsilon_{t}$$
(33)

De este modo, podemos estimar directamente la ponderación asignada a la predicción del modelo 1, que sustraída de 1, nos da la ponderación de la predicción del modelo 2. Asimismo, dado que es previsible que exista multicolinealidad entre predicciones competitivas, se recomienda imponer las restricciones sobre nulidad de la constante y suma de parámetros de las predicciones igual a 1, para mejorar la precisión de las estimaciones de las ponderaciones (Clements y Hendry, 2000, p.232).

iii) Contrastes de signo

El test propuesto por Pesaran y Timmermann (1992) tiene por objeto contrastar el grado de precisión en la predicción del signo de la variable, o en otras palabras, comprobar si las predicciones recogen los puntos de giro o de cambio de tendencia de los valores reales. Sea $\Delta y_t = y_t - y_{t-1}$, $\Delta f_t = f_t - f_{t-1}$, y:

p : proporción de veces en la muestra que el signo de la variable Δy_t es predicho correctamente

p1: proporción de veces en la muestra en que Δy_t es positivo

p2: proporción de veces en la muestra en que Δy_t es negativo

Bajo la hipótesis nula de que la serie de predicciones (f_t) y la serie real (y_t) se distribuyen independientemente (es decir, los valores predichos no tienen capacidad para predecir el signo de los valores reales), el número correcto de predicciones de signo en la muestra (p^*) sigue una distribución binomial.

El estadístico del contrate se distribuye como una normal estándar y se calcula del siguiente modo:

$$PT = \frac{(p - p^*)}{\left[var(p) - var(p^*)\right]^{1/2}}$$
 (34)

donde:

$$var(p) = p*(1-p*)/M$$

 $var(p*) = (2p1-1)^2 p2(1-p2)/M + (2p2-1)^2 p1(1-p1)/M + 4p1p2(1-p1)(1-p2)/M^2$
 $p* = p1p2 + (1-p1) (1-p2)$ o probabilidad de éxito en la muestra.

En el caso de dos categorías (signo positivo y negativo) el cuadrado del estadístico PT se distribuye asintóticamente como una chi-cuadrado de 1 grado de libertad.

3. Aplicación Empírica

3.1. Series de precios y sus fuentes

Los precios en origen a nivel nacional provienen del Boletín de Coyuntura Agraria del MAPA y también disponibles en http://www.mapa.es/es/estadistica/pags/preciostestigo. Se trata de precios medios nacionales, obtenidos como una media ponderada de los mercados más representativos. Tienen una frecuencia semanal, y están elaborados de acuerdo al Reglamento CE 295/96 en vacuno; Reglamento CE 481/86 y 2617/97 en ovino y Reglamento CE 1572/95 en porcino. Es decir, se trata de los precios que posteriormente son enviados a la Comisión Europea para la elaboración de sus estadísticas nacionales.

El precio en origen de vacuno (pov_nac), se corresponde con el precio de entrada a matadero, de "vacuno pesado, categoría A, clase R", expresado en €/100 kg en canal. El precio en origen de ovino (poo_nac), también expresado en €/100 kg canal, y referido a la entrada a matadero, es una media aritmética de los precios de las categorías I (12 a 13 kg/canal) y II(13.1 a 16 kg /canal). En el primer año de la muestra, tan sólo se publicaba una serie conjunta para ambas categorías, mientras que se ha desagregado posteriormente. Para tener una serie homogénea a lo largo de todo el período de análisis, se ha calculado un precio medio. Con ello se trata además, de obtener una serie comparable a los precios de cordero en otros países europeos. Los precios de porcino, expresados en €/kg canal, en posición de entrada al matadero, se corresponden con "porcino clase E". Los precios de pollo originales, también se expresan en €/100kg canal, pero se recogen a la salida del matadero. Los precios de cebada y maíz se expresan originalmente en €/tonelada, y se recogen a la entrada de la industria transformadora.

Los precios al consumo se han tomado del Boletín de Información Económica. Hasta 2003, este Boletín publicaba precios semanales al consumo elaborados por la Subdirección General de Precios y Relaciones Institucionales, del Ministerio de Industria, Comercio y Turismo (antes Ministerio de Economía). A partir de esta fecha, se pueden conseguir a través de la página web del Ministerio: http://www.comercio.es. Para aquellos casos en que existe más de un precio al consumo (ej. vacuno, ovino y porcino), se ha intentado, dentro de lo posible, seleccionar, bien aquella categoría más próxima a la seleccionada para el mercado en origen, bien aquella que representa un mayor peso en la comercialización total del producto.

En vacuno, el precio al consumo se refiere a "añojo 1ª tapa"; en ovino, a "pierna 1ª cordero Pascual"; y en porcino a "cerdo 1ª magro y chuletas".

Para cada sector, se han seleccionado entre los principales países productores europeos, aquellos que mantienen unas relaciones comerciales más intensas con España. Si bien estudios previos apuntan a cierto liderazgo de uno u otro país en la formación de precios (Sanjuán y Gil 2001a y 2001b), esos resultados hay que circunscribirlos a un período concreto. Por ello, nos ha parecido menos restrictivo seleccionar aquellos países que, al comerciar más intensamente con España, ya sea en su faceta de demandante u oferente, pueden estar ejerciendo una mayor influencia en la formación de precios nacional.

Para ilustrar este hecho, en el Cuadro 0, se presentan los saldos comerciales entre España y cada uno de los países de la UE en dos años intermedios de la muestra, 2002 y 2003. Se resaltan aquellos países con los cuales la balanza comercial es más excedentaria o deficitaria. Francia destaca en todos los sectores, siendo el saldo positivo para España en las carnes de vacuno, ovino y porcino, y negativo en el resto de sectores considerados. A pesar de que el saldo comercial de España con Portugal es siempre positivo, y claramente entre los mayores con los países de la UE, se ha excluido del análisis debido a su escaso peso en las producciones a nivel comunitario. En vacuno, además se ha seleccionado Alemania; en porcino, Holanda, por ser el principal origen de las importaciones españolas; y en cebada, el Reino Unido.

Las series de precios de estos países europeos se han tomado de la publicación Mercados Agrarios de la Comisión Europea, también disponible en http://ec.europa.eu/agriculture/publi/prices, donde se publican precios agrarios periodicidad semanal y mensual. Los precios originales de las carnes están expresados en €/ 100 kg canal, y son precios de entrada a matadero. En vacuno, se ha seleccionado la categoría A-R3; en porcino la categoría E; en ovino y pollo tan sólo existe una serie de precios. Las series de cebada y maíz, son precios de entrada a la industria transformadora, y se refieren a las variedades forrajeras.

En los Gráficos 1 a 6 se muestran las series de cada uno de los sectores.

Cuadro 0. Saldo de la balanza comercial entre España y el resto de países de la UE.

	Carne de l		Carne de ovino		Carne de p	
	2002	2003_	2002	2003	2002	2003
MUNDO	39083	86490	12607	6865	324879	364165
Unión Europea	25521	71663	19943	14199	329007	357342_
Alemania	-12531	-8957	204	610	58427	63239
Austria	-1487	-1011	28		336	514
Bélgica y Luxemburgo	-1503	80	59	-82	21	396
_Luxemburgo Dinamarca	-13459	-12146	39	-82	755	3457
Finlandia	-13439	-12140			133	3437
Francia	15170	21533	9906	8289	124136	139179
Grecia	2269	1967	9900	844	6038	5530
_ Grecia Irlanda	-2638	-5139		-31	396	953
Italia	15495	31935	5465	-82	35828	34265
Países Bajos	-10694	-2908	-119	-53	-4791	-9555
Portugal	34704	42627	1409	2605	100599	105509
Reino Unido	329	3862	1952	2237	6437	13672
Suecia	156	3602	1732	2231	746	175
	130				740	173
	Carne y despo	jos de aves	Cebad	la	Maí	Z
	Carne y despo	jos de aves 2003	Cebac 2002	la 2003	Maí 2002	z 2003
MUNDO						
MUNDO	2002	2003	2002	2003	2002	2003
MUNDO	2002 -41078	2003 -38352	-1536070 0 0	2003 -485792 0 0	-3431877	2003 -3809279
MUNDO Unión Europea	2002	2003	-1536070 0	2003 -485792 0	2002	2003
Unión Europea Alemania	2002 -41078	2003 -38352	-1536070 0 0	2003 -485792 0 0	-3431877	2003 -3809279
Unión Europea Alemania Austria	-35640	2003 -38352 -30643	-1536070 0 0	2003 -485792 0 0 -429591	2002 -3431877 -2141150	2003 -3809279 -1569905
Unión Europea Alemania Austria Bélgica y	-35640 -2367	-30643 -2113	2002 -1536070 0 0 -922374	2003 -485792 0 0 -429591	2002 -3431877 -2141150 -359	2003 -3809279 -1569905 62
Unión Europea Alemania Austria Bélgica y Luxemburgo	-35640 -2367	2003 -38352 -30643 -2113 -1600	-1536070 0 0	2003 -485792 0 0 -429591	2002 -3431877 -2141150 -359	2003 -3809279 -1569905
Unión Europea Alemania Austria Bélgica y Luxemburgo Dinamarca	-35640 -2367	-30643 -2113	2002 -1536070 0 0 -922374	2003 -485792 0 0 -429591	2002 -3431877 -2141150 -359	2003 -3809279 -1569905 62
Unión Europea Alemania Austria Bélgica y Luxemburgo Dinamarca Finlandia	-35640 -2367 -1252 307	2003 -38352 -30643 -2113 -1600 714	2002 -1536070 0 0 -922374	2003 -485792 0 0 -429591 -150309	2002 -3431877 -2141150 -359 124 1476	2003 -3809279 -1569905 62 1791
Unión Europea Alemania Austria Bélgica y Luxemburgo Dinamarca Finlandia Francia	-35640 -2367 -1252 307 -29881	2003 -38352 -30643 -2113 -1600 714 -25749	2002 -1536070 0 0 -922374	2003 -485792 0 0 -429591 -150309	2002 -3431877 -2141150 -359 124 1476 -2183130	2003 -3809279 -1569905 62 1791 -1647628
Unión Europea Alemania Austria Bélgica y Luxemburgo Dinamarca Finlandia Francia Grecia	-35640 -2367 -1252 307 -29881 586	2003 -38352 -30643 -2113 -1600 714 -25749 479	2002 -1536070 0 0 -922374	2003 -485792 0 0 -429591 -150309	2002 -3431877 -2141150 -359 124 1476	2003 -3809279 -1569905 62 1791
Unión Europea Alemania Austria Bélgica y Luxemburgo Dinamarca Finlandia Francia Grecia Irlanda	-35640 -2367 -1252 307 -29881 586 -598	2003 -38352 -30643 -2113 -1600 714 -25749 479 -30	2002 -1536070 0 0 -922374	2003 -485792 0 0 -429591 -150309	2002 -3431877 -2141150 -359 124 1476 -2183130 -50916	2003 -3809279 -1569905 62 1791 -1647628 -23857
Unión Europea Alemania Austria Bélgica y Luxemburgo Dinamarca Finlandia Francia Grecia Irlanda Italia	-35640 -2367 -1252 307 -29881 586 -598 -5024	2003 -38352 -30643 -2113 -1600 714 -25749 479 -30 -691	2002 -1536070 0 0 -922374	2003 -485792 0 0 -429591 -150309 -113942 -1424 1110	2002 -3431877 -2141150 -359 124 1476 -2183130 -50916 -2059	2003 -3809279 -1569905 62 1791 -1647628 -23857 18747
Unión Europea Alemania Austria Bélgica y Luxemburgo Dinamarca Finlandia Francia Grecia Irlanda Italia Países Bajos	-35640 -2367 -1252 307 -29881 -586 -598 -5024 -4913	2003 -38352 -30643 -2113 -1600 714 -25749 479 -30 -691 -7894	2002 -1536070 0 0 -922374 -54	2003 -485792 0 0 -429591 -150309 -113942 -1424 1110 10068	2002 -3431877 -2141150 -359 124 1476 -2183130 -50916 -2059 2873	2003 -3809279 -1569905 62 1791 -1647628 -23857 18747 -957
Unión Europea Alemania Austria Bélgica y Luxemburgo Dinamarca Finlandia Francia Grecia Irlanda Italia	-35640 -2367 -1252 307 -29881 586 -598 -5024	2003 -38352 -30643 -2113 -1600 714 -25749 479 -30 -691	2002 -1536070 0 0 -922374	2003 -485792 0 0 -429591 -150309 -113942 -1424 1110	2002 -3431877 -2141150 -359 124 1476 -2183130 -50916 -2059	2003 -3809279 -1569905 62 1791 -1647628 -23857 18747

Fuente: Estadísticas de Comercio Exterior de España. Agencia Estatal de Administración Tributaria.

Gráfico 1. Series de precios en el sector vacuno

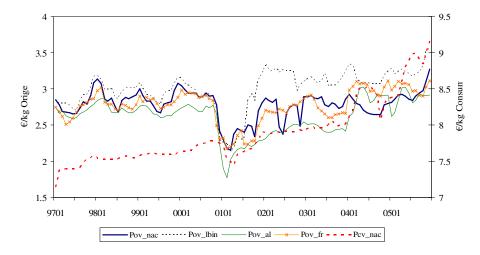


Gráfico 2. Series de precios en el sector ovino

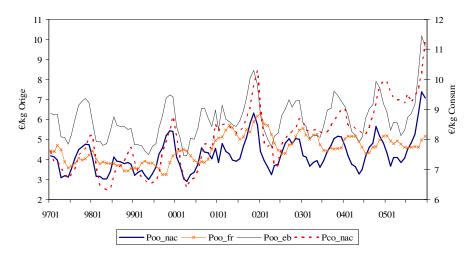


Gráfico 3. Series de precios en el sector porcino

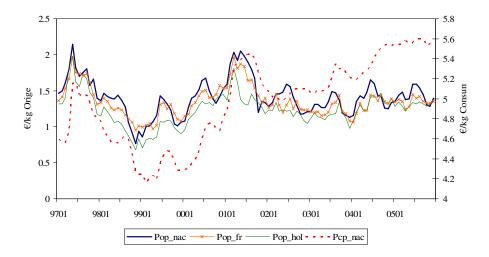


Gráfico 4. Series de precios en el sector pollo

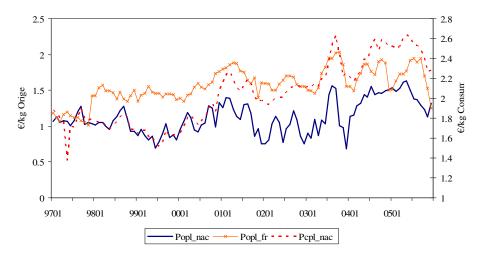


Gráfico 5. Series de precios en el sector Cebada

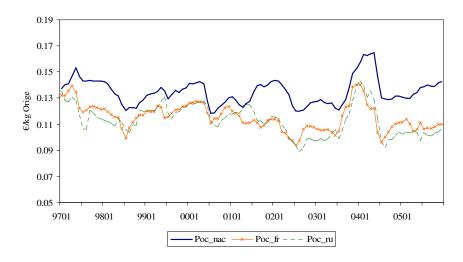
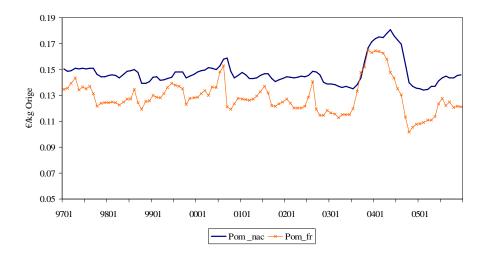



Gráfico 6. Series de precios en el sector maíz

3.2. Contrastes de raíz unitaria

La existencia de raíces unitarias en las series condiciona su modelización multivariante, por lo que su contraste, se convierte en una etapa esencial en cualquier análisis con series temporales. En este documento se han aplicado tres tests: el estadístico KPSS que contrasta la hipótesis nula de estacionariedad; el test de Philips-Perron modificado por Ng y Perron (2001), que contrasta la hipótesis nula de existencia de raíz unitaria. Como se puede observar en el Gráfico 1, los precios en origen del sector vacuno sufren una caída brusca a finales del año 2000, mientras que los precios al consumo, sufren una bajada evidente, aunque amortiguada, como consecuencia de la irrupción de la EEB en España. Como se vio en la sección metodológica, los tests tradicionales de raíz unitaria tienen escasa potencia para discernir entre la no estacionariedad inducida por una tendencia segmentada o por una tendencia estocástica. Para evitar esta posible confusión, se ha aplicado el test de Perron (1997) a las series de vacuno. Este test, contrasta la hipótesis nula de raíz unitaria frente a la alternativa de estacionariedad en torno a una tendencia segmentada, seleccionando endogeneamente la fecha de la ruptura.

Los resultados de estos contrastes se muestran en el Cuadro 1. Como se puede observar, el KPSS rechaza la hipótesis nula de estacionariedad en todas las series al 5%, concluyendo por tanto, que las series son al menos I(1). El estadístico de Ng y Perron acepta la hipótesis nula de raíz unitaria al 5% en todas las series (la serie Pom_nac está en el límite), salvo en los precios de cebada en España y Francia. Finalmente, el estadístico de Perron (1997) aplicado a las series de precios del sector vacuno, acepta la hipótesis nula de raíz unitaria al 5% para las series de precios en la lonja de Binéfar, precios al consumo y el precio del mercado alemán, y al 1% en el precio en origen agregado nacional, y el precio francés. Las fechas de ruptura detectadas son Septiembre de 2000 para las series de precios al consumo y los precios en Alemania y Francia, Octubre para la serie del precio en origen español, coincidiendo por tanto, con el inicio de la crisis de las vacas locas. La fecha de la ruptura se detecta en junio de 2001 en los precios de la lonja de Binéfar coincidiendo con la fase de recuperación de los mercados y los precios (ver Gráfico 1). Por consiguiente, concluimos que las series son I(1), aunque la evidencia para las series de precios de vacuno regional es menor, ya que en uno de los tres estadísticos, esta hipótesis se sostiene solo al 1%, y para los precios de cebada español y francés, donde uno de los estadísticos rechaza esta hipótesis. En consecuencia, una correcta especificación de los modelos multivariantes pasará por contrastar la existencia de cointegración o de relaciones de equilibrio a largo plazo entre

los niveles de las series de precios. No obstante, y dado que el objetivo final del documento consiste en predecir los precios agrarios, se van a estimar también modelos VAR en diferencias incluso en aquellos sistemas en que se halle cointegración, para evaluar cual de los dos modelos, VAR en diferencias o VECM arroja las mejores predicciones.

Cuadro 1. Contrastes de Raíz Unitaria *

	KPSS	Ng & Perron	Perron 97	
Serie	Estadístico	Estadístico	Estadístico	Fecha Ruptura
Vacuno				
Pov_lbin	0.572	-1.966	-4.425	2001:06
Pov_nac	0.435	-2.720	-5.135	2000:10
Pcv_nac	0.190	-1.096	-2.336	2000:09
Pov_al	0.776	-1.904	-4.675	2000:09
Pov_fr	0.666	-1.606	-5.383	2000:09
Ovino (en ln)				
Poo_eb	0.160	-0.450		
Poo_nac	0.151	-0.266		
Pco_nac	0.226	-1.164		
Poo_fr	0.632	-1.050		
Porcino (en ln)				
Pop_nac		-1.402		
Pcp_nac		-1.748		
Pop_fr		-2.073		
Pop_hol	0.674	-1.944		
Pollo				
Popl_nac		-1.744		
Pcpl_nac		-2.378		
Popl_fr	0.384	-2.804		
Cebada				
Poc_nac		-3.857		
Poc_fr		-3.417		
Poc_ru	0.431	-2.783		
Maíz	0.610	2.010		
Pom _nac		-2.910		
Pom_fr	0.533	-2.337		
Valor crítico 5%	0.146	-2.91	-5.05	
Valor crítico 1% (10% KPSS)	0.119		-5.68	

^{*} En KPSS y Ng& Perron, se contrasta sobre el modelo general con constante y tendencia; Perron 97, sobre modelo con ruptura en el nivel de la serie.

Opciones: KPSS: Parámetro de truncamiento k=0; Ng&Perron, Test de Perron modificado, serie filtrada por Mínimos Cuadrados Generalizados, selección automática del parámetro de truncamiento; Perron 97, selección de retardos automática, comenzando por 12 y descendiendo en el número eliminando aquellos no significativos al 10%, selección de la fecha de la ruptura maximizando el valor absoluto de la t-ratio correspondiente a la variable que representa el cambio en nivel (opción Studabs).

Fuentes: KPSS y Ng& Perron, utiliza procedimientos en GAUSS disponibles en las páginas de los autores; Perron 97, utiliza procedimiento en RATS disponible en la página de Estima.

3.3. Modelización univariante: ARIMA

En una fase inicial de esta modelización, se ha utilizado el programa TRAMO (*Time Series Regression with ARIMA Noise, Missing Observations and Outliers*), descrito en Gómez y Maravall (1996) y disponible en la página web del Banco de España (www.bde.es). Este programa es muy útil, porque permite el manejo de muchas series simultáneamente, identificando los *outliers* y el modelo ARIMA que mejor se ajusta a las funciones de Autocorrelación Muestral. Además, contrasta si las series deben transformarse en logaritmos o no. Este programa, reconoce tres tipos de *outliers*:

- i) Level Shift (LS) o cambio en nivel: representa un salto en el nivel medio de la serie que se mantiene en los períodos posteriores. Sea Tb el período en el que se produce el cambio, entonces LS = 1 $t \ge Tb$.
- *ii) Additive Outlier* (AO) o valor atípico aditivo: representa un salto en el nivel medio de la serie que afecta solo a un período: AO = 1 si t = Tb.
- iii) Transitory Change (TC) o cambio transitorio. Representa saltos en el nivel de la serie que, de forma amortiguada, eventualmente regresan a su nivel anterior. Por defecto, el programa asume que en cada período se corrige un 30% de la desviación respecto al nivel previo al cambio: TC = 1 si t = Tb; TC = 0.7 si t = Tb+1; $TC = 0.7^2$ si t = Tb+2, etc...

La aplicación de TRAMO nos ha permitido obtener una primera identificación de modelos ARIMA para cada serie de precios objeto de predicción, así como la identificación de valores atípicos, tanto en las series objeto de predicción como en las que posteriormente intervienen en los modelos multivariantes (p.ej. precios agrarios en otros países europeos o precios al consumo). Una vez obtenida esta información, se ha procedido a la estimación de los modelos ARIMA con el paquete estadístico RATS. Este último programa es más flexible, y nos va a permitir obtener predicciones para distintos horizontes temporales, así como estadísticos de diagnóstico de los residuos, que sean comparables con las predicciones y estadísticos aplicados en los modelos multivariantes posteriormente estimados.

En la selección del modelo final ARIMA se ha procedido del siguiente modo. En primer lugar, se ha partido del modelo seleccionado automáticamente por TRAMO y se han introducido las variables que modelizan los *outliers* como regresores adicionales (Análisis de intervención). A continuación, se contrasta autocorrelación, heteroscedasticidad y normalidad en los residuos, mediante lo estadísticos LB, ARCH test y JB, respectivamente, expuestos en la sección 1.2. Si los residuos superan satisfactoriamente todos los contrastes, mantenemos el

modelo inicial. Si por el contrario, los residuos no son ruido blanco, se procede a modificar las variables de intervención. Este es el caso, principalmente, cuando la condición que no se satisface es la normalidad y la heteroscedasticidad. En concreto, se eliminan aquellas dummies que no hayan resultado significativas y se introducen otras dummies impulso en aquellos periodos en que se haya observado que los residuos superan dos veces su desviación típica. Cuando la condición que no se cumple es la autocorrelación se revisa la Función de Autocorrelación Muestral, para comprobar posibles modelos alternativos. En el caso de que existan dos o más modelos alternativos, con residuos que satisfacen total o parcialmente los requisitos de ruido blanco, se aplican los estadísticos AIC y SC expuestos en la sección 1.2., y se selecciona aquel modelo que arroje un valor para estos estadísticos menor. En caso de discrepancias, se opta por el SIC.

Las modificaciones sobre los modelos inicialmente identificados, sin embargo, ha sido mínima, afectando tan solo a tres de las 9 series modelizadas con la metodología Box-Jenkins (Poo_eb, Poo_nac y Pop_nac).

En el Cuadro 2 se presenta un resumen de los modelos ARIMA identificados y finalmente utilizados en la predicción y, en el Cuadro 3, un resumen de los *outliers* identificados y utilizados en el análisis de intervención. Se incluyen también los correspondientes a aquellas series de precios que no se modelizan univariantemente por no ser objeto de predicción, pero que forman parte de los modelos multivariantes definidos posteriormente. Procedemos de este modo porque estos *outliers* identificados en la fase univariante pueden ser relevantes para corregir problemas de normalidad en los residuos en la fase multivariante, mientras que la selección de logaritmos o no, también nos da pautas para el tratamiento de las series en las siguientes fases.

En el Cuadro 2, se observa como predomina la selección de las variables en sus niveles originales. Tan solo en las series correspondientes al sector ovino y la mayoría de las series del sector porcino, se selecciona una transformación logarítmica (en la etapa multivariante, para poder estimar el modelo multivariante vertical referido series homogéneas, se transformará la serie Pcp_nac en logaritmos, aunque esta transformación no haya sido seleccionada en esta etapa del análisis). Asimismo, predomina la diferenciación regular. Tan sólo en 5 de las 23 series contempladas en el Cuadro 2, el programa TRAMO no aplica la diferenciación. Asimismo, también en la mayoría de las series se aplica una diferenciación estacional. En el componente regular, 11 de las 22 series, se modelizan como MA(1), mientras que solo tres, se modelizan exclusivamente con un componente AR(1). Estructuras

mixtas ARMA, se aplican a 4 series. En la modelización del componente estacional, predomina la modelización como MA(1). Solo en cuatro de las series se modeliza como un proceso autorregresivo AR(1). Finalmente, en 3 de las series, no se ha detectado un componente estacional, (pcv_nac, pop_hol y pop_fr).

El Cuadro 3 pone de manifiesto la existencia de varios valores atípicos, especialmente en el sector vacuno y, en particular, en el precio al consumo. De particular interés es la localización de estos *outliers*, coincidiendo temporalmente con la irrupción de la crisis de la EEB en España a finales de 2000. Así, se han identificado *outliers* de tipo escalón o cambio de nivel (LS) en noviembre/ diciembre de 2000 en todos los precios en origen (tanto en España como en Alemania y Francia). En la serie de precios al consumo de vacuno, los valores atípicos se detectan en 1997, año con precios anormalmente bajos respecto del resto de la serie (ver Gráfico 1) y a lo largo de 2001, fecha en que podemos aventurar que tuvo su efecto en los mercados al detalle la crisis de la EEB. Esta serie, no obstante, está sujeta a numerosos cambios de nivel, y en 2004, sufre subidas que el modelo ARIMA identifica como anómalas respecto al nivel frecuente de la serie. Es interesante observar como los valores atípicos que podemos adscribir a la irrupción de la EEB, también tiene su efecto en otros productos sustitutivos. Así, tanto en ovino como en pollo, se detectan cambios de nivel, permanente o transitorios, en diciembre de 2000 o en fechas próximas, tanto en la serie de precios en origen como al consumo.

Franses (2000, pag.148) advierte que no es fácil decidir si una serie tiene una raíz unitaria cuando está sometida a cambios permanentes o transitorios de nivel, *outliers* aditivos, o tendencias determinísticas cambiantes. Por ejemplo, no reconocer explícitamente los cambios de nivel o las tendencias quebradas, conduce a concluir a favor de la existencia de raíces unitarias con más frecuencia de la correcta, mientras que descuidar los *outliers* aditivos, conduce a aceptar la estacionariedad incorrectamente. No obstante, aunque los resultados teóricos apuntan en esta dirección, no se han diseñado contrastes compatibles con la presencia de estos datos anómalos, con la excepción de los contrastes que tienen en cuenta un cambio de nivel o tendencia, como el de Perron(1997) que es el que aplicamos a las series de vacuno. El resto de outliers detectados mediante el programa TRAMO, sin embargo, pueden estar incidiendo en la baja significatividad con la que se acepta la hipótesis nula de raíz unitaria mediante los estadísticos expuestos en la sección 3.2. en algunos casos, e incluso la aceptación de estacionariedad en algunas de las series.

Cuadro 2. Resumen de los modelos ARIMA identificados *

Sector	Serie	Log	Const.	p	d	q	P	D	Q
Vacuno	Poa_lbin	1	0	0	1	0	0	1	1
	Pov_nac	1	0	1	1	0	0	1	1
	Pcv_nac	1	0	0	1	1	0	0	0
	Pov_al	1	0	1	0	1	0	1	1
	Pov_fr	1	0	0	1	1	0	1	1
Ovino	Poo_eb (orig)	0	1	2	0	2	0	0	0
	Poo_eb (final)	0	0	1	1	1	1	1	0
	Poo_nac(orig)	0	1	3	0	0	0	1	1
	Poo_nac (final)	0	0	2	1	1	1	1	0
	Pco_nac	0	0	0	1	2	0	1	1
	Poo_fr	0	0	0	1	1	0	1	1
Porcino	Pop_nac (orig)	0	0	0	1	1	0	1	1
	Pop_nac (final)	0	0	1	1	1	0	1	1
	Pcp_nac	1	0	0	1	1	0	0	1
	Pop_fr	0	0	0	1	0	0	1	1
	Pop_hol	0	1	1	0	0	0	0	0
Pollo	Popl_nac	1	0	1	0	0	0	1	1
	Pcpl_nac	1	0	0	1	1	0	1	1
	Popl_fr	1	0	1	1	0	0	0	0
Cebada	Poc_nac	1	0	1	1	1	1	0	0
	Poc_fr	1	0	0	1	1	0	1	1
	Poc_ru	1	0	0	1	1	0	1	1
Maíz	Pom _nac	1	0	0	1	1	1	0	0
	Pom_fr	1	0	0	1	1	0	1	1

*Log = 0 indica que la serie se transforma en logaritmos neperianos, y Log= 1 se modeliza la serie original; Const = 0 indica que en la estimación del modelo ARIMA no se incluye constante y Const= 1 el modelo incluye constante; p es el orden del proceso AR; d es el orden de diferenciación; q orden del proceso MA; P el orden del proceso AR en el componente estacional; D el orden de diferenciación estacional; Q es 1 orden del proceso MA en el componente estacional.

Cuadro 3. Resumen de los *outliers* identificados y utilizados en el análisis de intervención *

Serie Poa_lbin												
Poa_lbin												
	LS1100	LS1200	LS0501	LS0801	AO1001	LS1002	AO0603					
Pov_nac _	LS1100	LS1200	LS0401	AO1001	AO1102	TC0502	AO0602					
Pcv_nac	LS0297	TC1097	AO1297	LS0201	TC0301	AO0401	TC1201	AO0803	LS0104	LS0204	LS0304	AO0404
Pov_al	LS1200	TC0101	AO0201	LS0702	LS0104							
Pov_fr	LS1100	LS1200	AO0601	LS1101	LS0104							
Poo_eb												
Poo_nac	TC0898	LS0201										
Pco_nac	LS0201	TC0502										
Poo_fr	AO0298	LS1100	LS1200	AO0601	LS1101	LS0104						
Pop_nac	AO0597	LS1297	AO1001	LS0699								
Pcp_nac _	LS0699	LS0301										
Pop_fr	LS0699											
Pop_hol _	TC0497											
_ Popl_nac	TC1200	LS0104										
Pcpl_nac	AO0597	LS1200										
Popl_fr	TC0199	AO1101	TC1203									
Poc_nac	AO0604											
Poc_fr	LS1103	AO0604										
Poc_ru												
	LS1003											
		TC0801	LS0903	TC1103								
	cv_nac cv_nac cv_nac cv_al cv_fr co_eb co_nac co_nac co_fr cop_nac cop_nac cop_nac cop_fr cop_hol cop_nac cop_fr cop_hol cop_nac cop_fr	LS0297	LS0297 TC1097	LS0297 TC1097 AO1297	LS0297 TC1097 AO1297 LS0201	LS0297 TC1097 AO1297 LS0201 TC0301	LS0297 TC1097 AO1297 LS0201 TC0301 AO0401	LS0297 TC1097 AO1297 LS0201 TC0301 AO0401 TC1201	LS0297 TC1097 AO1297 LS0201 TC0301 AO0401 TC1201 AO0803	LS0297 TC1097 AO1297 LS0201 TC0301 AO0401 TC1201 AO0803 LS0104	LS0297 TC1097 AO1297 LS0201 TC0301 AO0401 TC1201 AO0803 LS0104 LS0204	LS0297 TC1097 AO1297 LS0201 TC0301 AO0401 TC1201 AO0803 LS0104 LS0204 LS0304

^{*} Las dos primeras letras identifican el tipo de *outlier* (AO: *additive outlier*; LS: *level shift*; TC: *transitory change*); las dos primera cifras identifican el mes, y las dos últimas el año, correspondientes a la fecha del valor atípico. Así, por ejemplo AO0604, significa que existe un valor atípico, de tipo aditivo, en junio de 2004.

En los Cuadros 4 a 9 se presentan los parámetros estimados y los resultados de los contrastes efectuados a los residuos. En todos los modelos estimados la significatividad individual de los parámetros, tanto de las variables ficticias que se incluyen para captar el efecto de los valores atípicos y cambios estructurales, como de los parámetros ARMA, es elevada (valor p<0.001 en prácticamente la totalidad de los parámetros). El grado de ajuste también es elevado, superando 0.83 en todos los modelos, salvo para el caso de los precios en origen del pollo, donde el R² no alcanza 0.7. Todos los modelos salvo dos, superan la prueba de normalidad de los residuos. Tan solo en los modelos de las series Pov_nac y Pom_nac, se detectan problemas de normalidad derivados de un exceso de asimetría y curtosis, respectivamente. Se probaron otros modelos, que sin embargo no arrojaron mejores resultados. Tras la estimación de varios modelos alternativos, subsisten problemas de autocorrelación en los modelos de Pov_lbin (de orden 12) y Poo_nac. En ninguno de los modelos se detecta una estructura ARCH en los residuos, para varios órdenes (3, 6 y 12).

Cuadro 4. Estimación y Verificación de modelos ARIMA. Sector Vacuno.

	Pov_	_lbin			Pov_nac				
Variable	Coeficiente	Error Standard	valor p	Variable	Coeficiente	Error Standard	valor p		
SMA{12}	-0.643	0.116	0.000	AR{1}	-0.754	0.120	0.000		
LS1100	-0.278	0.051	0.000	MA{1}	1.009	0.047	0.000		
LS1200	-0.496	0.051	0.000	SMA{12}	-0.829	0.096	0.000		
LS0501	0.198	0.050	0.000	LS1100	-0.270	0.071	0.000		
LS0801	0.462	0.051	0.000	LS1200	-0.454	0.072	0.000		
AO1001	-0.152	0.037	0.000	LS0401	0.235	0.070	0.001		
LS1002	-0.314	0.053	0.000	AO1001	-0.166	0.042	0.000		
AO0603	0.150	0.038	0.000	AO1102	-0.332	0.047	0.000		
				TC0502	-0.135	0.051	0.010		
				AO0602	-0.129	0.048	0.010		
\mathbb{R}^2	0.965	$R^{2\; corregido}$	0.961	\mathbb{R}^2	0.890	$R^{2 \text{ corregido}}$	0.875		
	SK estandar.	K estandar.	ЈВ		SK estandar.	K estandar.	ЈВ		
Estadístico	-0.873	0.284	1.271	Estadístico	-2.304	2.734	10.174		
valor p	0.191	0.612	0.530	valor p	0.011	0.997	0.006		
	LB-3	LB-6	LB-12		LB-3	LB-6	LB-12		
Estadístico	2.362	6.796	25.667	Estadístico	2.497	8.110	15.023		
valor p	0.307	0.236	0.007	valor p	0.114	0.087	0.131		
	ARCH-3	ARCH-6	ARCH-12		ARCH-3	ARCH-6	ARCH-12		
Estadístico	0.233	2.995	9.001	Estadístico	1.213	2.818	12.498		
valor p	0.972	0.809	0.703	valor p	0.750	0.831	0.407		

Cuadro 5. Estimación y Verificación de modelos ARIMA. Sector Ovino.

	Poo_Eb				Poo_nac			
Variable	Coeficiente	Error Standard	valor p	Variable	Coeficiente	Error Standard	valor p	
AR{1}	0.728	0.071	0.000	AR{1}	0.324	0.144	0.029	
SAR{12}	-0.701	0.071	0.000	AR{2}	0.196	0.105	0.067	
MA{1}	-1.189	0.100	0.000	SAR{12}	-0.746	0.070	0.000	
				MA{1}	-0.937	0.060	0.000	
				TC0898	0.105	0.054	0.057	
				LS0201	0.164	0.040	0.000	
\mathbb{R}^2	0.833	$R^{2 \text{ corregido}}$	0.827	\mathbb{R}^2	0.849	$R^{2\; corregido}$	0.836	
	SK estandar.	K estandar.	JB		SK	K	JB	
	SK Estallual.	K estallual.	JD		estandar	estandar.	JD	
Estadístico	0.169	0.331	0.569	Estadístico	0.180	0.164	0.297	
valor p	0.567	0.630	0.752	valor p	0.571	0.565	0.862	
	LB-3	LB-6	LB-12		LB-3	LB-6	LB-12	
Estadístico		7.363	16.593	Estadístico		10.810	19.955	
valor p		0.061	0.055	valor p		0.004	0.010	
	ARCH-3	ARCH-6	ARCH- 12		ARCH-3	ARCH-6	ARCH-12	
Estadístico	4.179	4.365	16.593	Estadístico	0.489	8.839	11.966	
valor p	0.243	0.627	0.166	valor p	0.921	0.183	0.448	

Cuadro 6. Estimación y Verificación de modelos ARIMA. Sector Porcino.

	Pop_nac								
Variable	Coeficiente	Error Standard	valor p						
AR{1}	0.866	0.078	0.000						
MA{1}	-0.822	0.118	0.000						
SMA{12}	-0.374	0.134	0.007						
AO0597	0.100	0.000	0.000						
LS1297	0.100	0.000	0.000						
AO1001	-0.176	0.037	0.000						
LS0699	0.148	0.053	0.007						
R^2	0.872	$R^{2 corregido}$	0.858						
	SK estandar.	K estandar.	JB						
Estadístico	-0.236	0.509	0.888						
valor p	0.407	0.695	0.642						
	LB-3	LB-6	LB-12						
Estadístico		6.056	9.994						
valor p		0.048	0.351						
	ARCH-3	ARCH-6	ARCH-12						
Estadístico	3.697	5.181	12.259						
valor p	0.296	0.521	0.425						

Cuadro 7. Estimación y Verificación de modelos ARIMA. Sector Pollo.

Popl_nac							
Variable	Coeficiente	Error Standard	valor p				
AR{1}	0.677	0.088	0.000				
SMA{12}	-0.735	0.110	0.000				
TC1200	0.459	0.114	0.000				
LS0104	0.371	0.100	0.000				
\mathbb{R}^2	0.666	$R^{2 corregido}$	0.652				
	SK estandar.	K estandar.	JB				
Estadístico	0.570	0.268	0.806				
valor p	0.716	0.606	0.668				
	LB-3	LB-6	LB-12				
Estadístico	1.931	2.484	15.457				
valor p	0.165	0.647	0.116				
	ARCH-3	ARCH-6	ARCH-12				
Estadístico	8.573	11.021	16.005				
valor p	0.036	0.088	0.191				

Cuadro 8. Estimación y Verificación de modelos ARIMA. Sector Cebada

	Poc_nac								
Variable	Coeficiente	Error Standard	valor p						
AR{1}	0.494	0.141	0.001						
SAR{12}	0.476	0.104	0.000						
MA{1}	0.360	0.152	0.020						
AO0604	-0.016	0.003	0.000						
R^2	0.935	$R^{2 \text{ corregido}}$	0.932						
	SK estandar.	K estandar.	JB						
Estadístico	-0.806	0.350	1.273						
valor p	0.210	0.637	0.529						
	LB-3	LB-6	LB-12						
Estadístico		2.110	8.589						
valor p		0.550	0.476						
	ARCH-3	ARCH-6	ARCH-12						
Estadístico	1.676	3.917	8.587						
valor p	0.642	0.688	0.738						

Cuadro 9. Estimación y Verificación de modelos ARIMA. Sector Maíz

	Pom_nac									
Variable	Coeficiente	Error Standard	valor p							
SAR{12}	0.330	0.128	0.012							
MA{1}	0.598	0.096	0.000							
LS1003	0.005	0.002	0.029							
R^2	0.937	R ^{2 corregido}	0.936							
	SK estandar.	K estandar.	JB _							
Estadístico	0.034	11.969	21.440							
valor p	0.513	1.000	0.000							
	LB-3	LB-6	LB-12							
Estadístico	1.109	3.237	13.141							
valor p	0.292	0.519	0.216							
	ARCH-3	ARCH-6	ARCH-12							
Estadístico	2.099	3.722	9.435							
valor p	0.552	0.714	0.665							

3.4. Modelización multivariante

3.4.1. Modelos VAR

El objetivo de la modelización multivariante es buscar series de precios que ayuden a predecir las series de precios en origen. Se pueden distinguir dos aproximaciones, que llamamos horizontal y vertical. La horizontal hace referencia a utilizar precios del mismo producto en mercados geográficamente separados. Así, se han definido sistemas de precios que engloban series de precios del mismo bien en localizaciones distintas. Así, definimos dos VAR horizontal (VARh) con los precios en origen de vacuno (Pov_nac Pov_al Pov_fr) y (Poa_lbin Pov_al Pov_fr). En el primer sistema, el objetivo es predecir el precio en origen de vacuno nacional, y en el segundo, el precio en la Lonja de Binéfar. En el sector ovino, se definen dos sistemas VARh, con el objetivo de predecir el precio de ovino en la lonja del Ebro (Poo_eb Poo_fr) y el precio de ovino nacional (Poo_nac Poo_fr). En porcino y pollo, se define un sistema VARh compuesto por los precios en origen en España, Francia y Holanda (Pop_nac Pop_fr Pop_hol) y (Popl_nac Popl_fr Popl_hol), respectivamente; en cebada el sistema está compuesto por los precios en España, Francia y Reino Unido (Poc_nac Poc_fr Poc_ru); y en maíz por los precios en España y Francia (Pom_nac Pom_fr).

La segunda aproximación multivariante para predecir los precios agrarios, la denominamos vertical, y hace referencia a la utilización de los precios al consumo. Se han definido dos sistemas VARv en vacuno (Pov_lbin Pcv_nac) y (Pov_nac Pcv_nac); dos en ovino (Poo_eb Pco_nac) y (Poo_nac Pco_nac); uno en porcino (Pop_nac Pcp_nac); y uno en pollo (Popl_nac Pcpl_nac).

Clements y Hendry (2000), llevan a cabo experimentos de Monte Carlo para evaluar el impacto de imponer restricciones de cointegración sobre la precisión en la predicción en muestras pequeñas. Así, comparan el coste de imponer menos relaciones de cointegración que las correctas (estimar un VAR en diferencias en lugar de un VECM), con el coste de incluir relaciones de cointegración inexistentes, concluyendo que un VAR en diferencias no aporta predicciones inferiores a un modelo de corrección del error que incluye correctamente la restricción sobre cointegración, mostrándose también superior a un modelo VAR en niveles.

Debido a la aparente falta de consenso en la literatura sobre el impacto de imponer la restricción de cointegración, en este documento se estiman los modelos multivariantes en tres vertientes: VAR en diferencias, Modelo de Corrección del Error y VAR en niveles.

Empezamos por el primero, en el que se evalúan los residuos y se identifica los elementos deterministas. Los dos modelos restantes, se construyen a partir de esta identificación.

En la especificación de los modelos multivariantes se han incluido inicialmente las dummies que captan los valores atípicos detectados en el procedimiento univariante, y que afectaban a todas las series de precios incluidas en el modelo multivariante. En el VAR en diferencias y VECM, también se ha aplicado una diferencia regular a estas variables ficticias, en consonancia con la diferenciación de las variables endógenas. Así, por ejemplo, las variables escalón LS se convierten en variables impulso, que toman el valor uno la fecha de inicio del *outlier* y cero en el resto. No obstante, tras el chequeo de los residuos, en algunos casos has sido preciso eliminar o re-emplazar algunas de estas ficticias para conseguir que éstos cumplan con las exigencias de normalidad. Se han utilizado los mismos estadísticos de diagnóstico de los residuos que en la modelización univariante.

En todos los modelos se incluyen 3 retardos (2 tras la diferenciación), salvo en el modelo que incluye los precios internacionales de vacuno y el de la lonja de Binéfar, en el que se incluyen 3 retardos para corregir problemas de autocorrelación en la ecuación del precio alemán. Los estadísticos AIC, HQ y SC de selección de retardos arrojaban resultados no unánimes para cada uno de los modelos, si bien existía un predominio de dos y tres retardos. Asimismo, para captar el componente estacional, se han incluido once ficticias estacionales centradas.

En los Cuadros 10 a 15, se presenta un resumen de los resultados de cada modelo VAR en diferencias. Como incluir cada uno de los parámetros estimados ocuparía mucho espacio, se incluyen en su lugar los resultados de contrastes de significatividad conjunta. Para cada uno de los modelos estimados, se han llevado a cabo tres contrastes de significatividad conjunta: sobre los retardos de cada una de las variables; sobre las ficticias estacionales; y sobre las ficticias que recogen los cambios determinísticos. El primero es un contraste F; mientras que los dos últimos, se ha llevado a cabo mediante ratios de verosimilitud (LR). Por ejemplo, para contrastar la significatividad conjunta de las once ficticias estacionales en todas las ecuaciones del modelo, se estiman dos modelos, uno no restringido, que incluye estas variables, y otro restringido en que se excluyen. El estadístico del contraste es:

$$LR = (n - c)(log|\Sigma_{RES}| - log|\Sigma_{NR}|) \sim \chi_R^2$$

donde $|\Sigma_{RES}|$ es el determinante de la matriz de varianzas y covarianzas de los residuos en el modelo restringido; $|\Sigma_{NR}|$ es el determinante de la matriz de varianzas y covarianzas de los

residuos en el modelo no restringido; n es el número de observaciones; y c es una corrección que recomienda Sims (1980,p.17) y que coincide con el número de variables en cada ecuación del modelo no restringido; y R es el número de restricciones impuesto en todas las ecuaciones. Este estadístico se distribuye como una chi-cuadrado con tantos grados de libertad como restricciones se imponen.

Los catorce modelos VAR superan las pruebas de especificación de los residuos. Tan sólo subsisten problemas de autocorrelación de orden 6 y 12 en el sistema de precios de ovino que incluye el precio de la lonja del Ebro y el precio al consumo (Cuadro 11, panel d). La inclusión de un número superior de retardos no consiguió corregir este problema, por lo que, se mantuvo el número de retardos en dos. Los estadísticos de contraste conjunto de las ficticias estacionales y de las dummies que tratan de modelizar los valores atípicos, son altamente significativos, lo que pone de manifiesto la necesidad de corregir las series por su componente estacional y outliers en aras a conseguir modelos correctamente especificados y predicciones más precisas. Los contrastes F de significatividad conjunta de los retardos propios y de otros precios, arrojan valores escasamente significativos en algunas de las ecuaciones de algunos de los modelos. Tal es el caso de los retardos de los precios internacionales de vacuno sobre el precio nacional, o del precio al consumo y francés de ovino sobre el precio de la lonja del Ebro. No obstante, a la hora de interpretar los resultados arrojados por los contrastes F uni-ecuacionales hay que ser cautos, dado que, aunque un contraste nos indique que los retardos de una variable X no influyan en una variable Y, esta influencia puede ser indirecta, a través de su influencia en otras ecuaciones del sistema.

Cuadro 10. Estimación, contraste y diagnóstico de los Modelos VAR. Sector Vacuno.

a) Sistema: DPov_nac Dpov_al Dpov_fr									
		Ecuación							
		DPov_nac	(valor p)	DPov_al	(valor p)	DPov_fr	(valor p)		
Test F variables	DPov_nac	1.297	0.282	4.235	0.020	3.204	0.049		
endógenas	DPov_al	2.064	0.137	9.999	0.000	4.492	0.016		
retardadas	DPov_fr	0.600	0.553	0.278	0.759	2.732	0.074		
Test LR - ficticias	estacionales	81.687	0.000						
	LR - outliers	261.255	0.000						
Ajuste	\mathbb{R}^2	0.900		0.929		0.880			
	R ^{2 corregido}	0.835		0.882		0.802			
Normalidad	SK estandar	1.512	0.935	-0.270	0.393	-0.300	0.382		
	K estandar	0.938	0.826	0.001	0.500	0.051	0.520		
	JB	4.073	0.131	0.075	0.963	0.187	0.911		
Autocorrelación	LB-3	2.727	0.099	0.928	0.336	0.074	0.786		
	LB-6	7.070	0.132	2.411	0.661	8.307	0.599		
	LB-12	17.142	0.071	6.254	0.794	8.307	0.599		
ARCH	ARCH-3	1.678	0.642	0.575	0.902	1.710	0.635		
	ARCH-6	4.222	0.647	2.736	0.841	4.513	0.608		
	ARCH-12	7.576	0.817	9.742	0.639	5.698	0.931		
Criterio de selección	AIC	-18.989							
	SIC/BIC	-16.013							

b) Sistema: DPo	v_nac DPcv_	nac	_		_
		Ecuación			
		DPov_nac	(valor p)	DPcv_nac	(valor p)
Test F variables	DPov_nac	0.534	0.589	0.492	0.614
endógenas retardadas	DPcv_nac	3.013	0.057	7.032	0.002
Test LR - ficticias e	stacionales	47.618	0.002		
LR - outliers		181.563	0.000		
Ajuste	\mathbb{R}^2	0.875		0.789	
	R ^{2 corregido}	0.814		0.688	
	SK estándar	1.802	0.964	1.061	0.856
Normalidad	K estándar	0.761	0.777	0.395	0.653
	JB	4.699	0.095	1.878	0.391
	LB-3	0.999	0.318	4.198	0.041
Autocorrelación	LB-6	2.952	0.566	7.589	0.108
	<u>LB-12</u>	11.453	0.323	12.771	0.237
	ARCH-3	1.770	0.621	2.661	0.447
ARCH	ARCH-6	7.457	0.826	11.977	0.448
	ARCH-12	7.457	0.826	11.977	0.448
Criterio de	AIC	-12.694			
selección	SIC/BIC	-11.050			

c) Sistema: Dpov_lbin	n Dpov_al Dpov	v_fr					
		Ecuación					
		DPov_lbin	(valor p)	DPov_al	(valor p)	DPov_fr	(valor p)
Test F variables	DPov_lbin	3.731	0.018	13.355	0.000	0.954	0.424
endógenas retardadas	DPov_al	2.586	0.066	3.330	0.029	0.990	0.407
	DPov_fr	3.902	0.015	5.425	0.003	0.449	0.720
Test LR - ficticias estacio	nales	93.755	0.000				
LR - outliers		263.185	0.000				
Ajuste	R^2	0.941		0.969		0.894	
	R ^{2 corregido}	0.878		0.935		0.779	
Normalidad	Skewness	0.145	0.558	-0.208	0.418	0.537	0.704
	Kurtosis	0.000	0.500	0.324	0.627	0.152	0.560
	JB	0.021	0.990	0.653	0.722	0.570	0.752
Autocorrelación	LB-3	3.376	0.066	1.769	0.184	5.954	0.015
	LB-6	4.915	0.178	8.067	0.045	5.992	0.112
	LB-12	15.432	0.080	12.915	0.167	15.289	0.083
ARCH	ARCH-3	2.091	0.554	1.210	0.751	1.524	0.677
	ARCH-6	15.076	0.237	15.818	0.200	10.301	0.590
	ARCH-12	15.076	0.237	15.818	0.200	10.301	0.590
Criterio de selección	AIC	-20.042					
	SIC/BIC	-16.189					

d) Sistema: DPov	_lbin DPcv_n	ac			
		Ecuación			
		DPov_lbin	(valor p)	DPcv_nac	(valor p)
Test F variables	DPov_lbin	2.350	0.104	5.635	0.005
endógenas retardadas	DPcv_nac	0.164	0.848	2.293	0.109
Test LR - ficticias es	stacionales	60.343	0.000		
LR - outliers		180.054	0.000		
A :	\mathbb{R}^2	0.878		0.792	
Ajuste	R ^{2 corregido}	0.826		0.702	
	SK estándar	0.421	0.663	-0.537	0.296
Normalidad	K estándar	0.006	0.502	0.687	0.754
	JB	0.189	0.910	1.596	0.450
	LB-3	3.110	0.077	1.028	0.310
Autocorrelación	LB-6	9.868	0.042	2.103	0.716
	LB-12	27.820	0.001	5.490	0.856
	ARCH-3	3.954	0.266	2.212	0.529
ARCH	ARCH-6	6.566	0.362	5.645	0.464
	ARCH-12	10.564	0.566	6.317	0.899
Criterio de	AIC	-12.958			
selección	SIC/BIC	-11.370			

Cuadro 11. Estimación, contraste y diagnóstico de los Modelos VAR. Sector Ovino.

a) Sistema: DPoo_r	ac DPoo_fi	r			
		Ecuación			
		Dpoo_nac	(valor p)	Dpoo_fr	(valor p)
Test F variables	Dpoo_nac	1.219	0.302	0.540	0.585
endógenas retardadas	Dpoo_fr	3.869	0.026	7.549	0.001
Test LR - ficticias		87.452	0.000		
LR - outliers		25.073	0.000		
A :4-	\mathbb{R}^2	0.708		0.616	
Ajuste	R ^{2 corregido}	0.636		0.522	
	Skewness	-1.095	0.137	-1.198	0.115
Normalidad	Kurtosis	0.387	0.651	0.000	0.500
	JB	1.936	0.380	1.435	0.488
	LB-3	2.829	0.093	0.353	0.553
Autocorrelación	LB-6	7.932	0.094	3.936	0.415
	LB-12	32.699	0.000	15.908	0.102
	ARCH-3	2.264	0.519	1.778	0.620
ARCH	ARCH-6	2.783	0.836	6.505	0.369
	ARCH-12	5.600	0.935	9.870	0.627
Criterio de selección	AIC	-11.727			
CHICHO de selección	SIC/BIC	-10.707			

b) Sistema: DPoo_	_nac DPco_	_nac			
		Ecuación			
		DPoo_nac	(valor p)	DPco_nac	(valor p)
Test F variables	DPoo_nac	1.502	0.230	3.520	0.035
endógenas retardadas	DPco_nac	1.823	0.170	5.075	0.009
Test LR - ficticias esta	acionales	99.086	0.000		
LR - outliers		66.425	0.000		
	$\overline{R^2}$	0.739			
Ajuste	R ^{2 corregido}	0.666			
	Skewness	-0.515	0.303	2.265	0.988
Normalidad	Kurtosis	0.891	0.813	0.411	0.659
	JB	1.961	0.375	5.915	0.052
	LB-3	3.604	0.058	0.198	0.657
Autocorrelación	LB-6	9.476	0.050	11.527	0.021
	LB-12	33.681	0.000	18.899	0.042
	ARCH-3	4.656	0.199	1.088	0.780
ARCH	ARCH-6	13.326	0.346	13.203	0.354
	ARCH-12	13.326	0.346	13.203	0.354
Criterio de selección	AIC	-12.852			
Citieno de selección	SIC/BIC	-11.718			

c) Sistema: DPoo_e	eb DPoo_fr				
		Ecuación			
		DPoo_eb	(valor p)	DPoo_fr	(valor p)
Test F variables	DPoo_eb	0.332	0.718	0.835	0.438
endógenas retardadas	DPoo_fr	1.908	0.156	10.802	0.000
Test LR - ficticias estac	cionales	79.316	0.000		
LR - outliers		31.673	0.000		
Ajuste	R^2	0.693		0.654	
	R ^{2 corregido}	0.606		0.556	
	Skewness	0.202	0.580	-1.104	0.135
Normalidad	Kurtosis	0.997	0.841	0.020	0.508
	JB	1.939	0.379	1.258	0.533
	LB-3	2.676	0.102	1.184	0.277
Autocorrelación	LB-6	7.134	0.129	2.812	0.589
	LB-12	38.564	0.000	10.574	0.392
	ARCH-3	0.789	0.852	2.181	0.536
ARCH	ARCH-6	5.604	0.935	9.607	0.650
	ARCH-12	5.604	0.934	6.215	0.399
Cuitania de calcusión	AIC	-11.782			
Criterio de selección	SIC/BIC	-10.648			

d) Sistema: DPo	o_eb DPco_	_nac			
		Ecuación			
		DPoo_eb	(valor p)	DPco_nac	(valor p)
Test F variables	DPoo_eb	0.774	0.465	2.708	0.074
endógenas retardadas	DPco_nac	1.582	0.213	5.048	0.009
Test LR - ficticias e	estacionales	79.542	0.000		
LR - outliers		65.037	0.000		
	\mathbb{R}^2	0.697			
Ajuste	R ^{2 corregido}	0.606			
	Skewness	0.130	0.552	0.920	0.821
Normalidad	Kurtosis	0.896	0.815	0.163	0.565
	JB	1.722	0.423	1.156	0.561
	LB-3	2.727	0.099	0.201	0.654
Autocorrelación	LB-6	11.590	0.021	14.089	0.007
	LB-12	42.477	0.000	24.802	0.006
	ARCH-3	1.855	0.603	3.743	0.291
ARCH	ARCH-6	4.655	0.969	6.137	0.909
	ARCH-12	4.655	0.969	6.137	0.909
Criterio de	AIC	-12.894			
selección	SIC/BIC	-11.704			

Cuadro 12. Estimación, contraste y diagnóstico de los Modelos VAR. Sector Porcino.

a) Sistema: DPop_	nac DPop_	fr DPop_ho	1				
		Ecuación					
		DPop_nac	(valor p)	DPop_fr	(valor p)	Dpop_hol	(valor p)
Test F variables	DPop_nac	4.712	0.012	0.857	0.429	1.686	0.193
endógenas retardadas	DPop_fr	1.708	0.189	2.319	0.106	0.274	0.761
	Dpop_hol	4.359	0.017	0.832	0.440	0.736	0.483
Test LR - ficticias esta	cionales	98.530	0.000				
LR - outliers		22.452	0.000				
	\mathbb{R}^2	0.626		0.441		0.406	
Ajuste	R ^{2 corregido}	0.528		0.293		0.248	
Normalidad	Skewness	-1.041	0.149	0.526	0.701	0.531	0.702
	Kurtosis	1.265	0.897	1.097	0.864	0.221	0.588
	JB	3.492	0.175	2.365	0.307	0.704	0.704
	LB-3	1.217	0.270	0.650	0.420	4.110	0.043
Autocorrelación	LB-6	9.162	0.057	2.062	0.724	5.645	0.227
	LB-12	15.979	0.100	10.336	0.412	8.824	0.549
	ARCH-3	0.701	0.873	4.442	0.218	2.133	0.545
ARCH	ARCH-6	2.043	0.916	6.647	0.355	6.191	0.402
	ARCH-12	6.440	0.892	10.694	0.555	13.075	0.363
Cuitaria da calac aión	AIC	-16.920					
Criterio de selección	SIC/BIC	-15.304				_	_

b) Sistema: DPop_na	c DPcp_nac				
		Ecuación			
		DPop_nac	(valor p)	DPcp_nac	(valor p)
Test F variables	DPop_nac	1.174	0.315	4.165	0.020
endógenas retardadas	DPco_nac	1.284	0.284	7.497	0.001
Test LR - ficticias estacio	nales	66.282	0.000		
LR - outliers		85.958	0.000		
	\mathbb{R}^2	0.725		0.780	
Ajuste	R ^{2 corregido}	0.648		0.717	
	Skewness	0.887	0.812	0.779	0.782
Normalidad	Kurtosis	0.879	0.810	0.159	0.563
	JB	2.460	0.292	0.909	0.635
	LB-3	1.291	0.256	6.966	0.008
Autocorrelación	LB-6	5.588	0.232	7.550	0.109
	LB-12	15.736	0.108	24.837	0.006
ADCH	ARCH-3	7.431	0.059	12.286	0.007
ARCH	ARCH-6	7.374	0.287	16.995	0.009
	ARCH-12	10.050	0.612	19.114	0.086
Cuitania da salassión	AIC	-14.783			
Criterio de selección	SIC/BIC	-13.649			

Cuadro 13. Estimación, contraste y diagnóstico de los Modelos VAR. Sector Pollo.

a) Sistema: DPopl_nac	DPopl_fr				
		Ecuación			
		DPopl_nac	(valor p)	DPopl_fr	(valor p)
Test F variables endógenas	DPopl_nac	1.739	0.183	11.194	0.000
retardadas	DPopl_fr	0.734	0.484	0.931	0.399
Test LR - ficticias estacional	es	55.536	0.000		
LR - outliers		47.855	0.000		
Aivata	\mathbb{R}^2	0.626		0.481	
Ajuste	R ^{2 corregido}	0.527		0.344	
	Skewness	0.240	0.595	0.045	0.518
Normalidad	Kurtosis	0.143	0.557	1.415	0.922
	JB	0.330	0.848	2.697	0.260
	LB-3	3.118	0.077	0.979	0.322
Autocorrelación	LB-6	3.634	0.458	3.507	0.477
	LB-12	24.093	0.007	13.116	0.217
	ARCH-3	3.497	0.321	2.042	0.564
ARCH	ARCH-6	6.464	0.373	3.117	0.794
	ARCH-12	6.772	0.872	6.658	0.879
Criterio de selección	AIC	-9.120			
Citterio de selección	SIC/BIC	-8.043			

b) Sistema: Popl_nac Po	cpl_nac				
_		Ecuación			
		DPopl_nac	(valor p)	DPcpl_nac	(valor p)
Test F variables endógenas	DPopl_nac	2.612	0.080	5.057	0.009
retardadas	DPcpl_nac	0.467	0.629	0.569	0.569
Test LR - ficticias estacional	les	75.856	0.000		
LR - outliers		79.897	0.536		
A instal	\mathbb{R}^2	0.452		0.705	
Ajuste	R ^{2 corregido}	0.337		0.643	
	Skewness	0.908	0.818	1.258	0.896
Normalidad	Kurtosis	0.225	0.589	0.423	0.664
	JB	1.254	0.534	2.388	0.303
	LB-3	1.429	0.232	2.004	0.157
Autocorrelación	LB-6	2.232	0.693	2.805	0.591
	LB-12	23.236	0.010	12.023	0.284
	ARCH-3	5.759	0.124	3.346	0.341
ARCH	ARCH-6	5.468	0.485	7.384	0.831
	ARCH-12	9.822	0.632	7.384	0.831
Criterio de selección	AIC	-10.273			
Criterio de selección	SIC/BIC	-9.366			

Cuadro 14. Estimación, contraste y diagnóstico de los Modelos VAR. Sector Cebada.

Sistema: Dpoc_na	Sistema: Dpoc_nac Dpoc_fr Dpoc_ru							
		Ecuación						
		Dpoc_nac	(valor p)	Dpoc_fr	(valor p)	Dpoc_ru	(valor p)	
Test F variables	Dpoc_nac	9.592	0.000	0.753	0.475	1.267	0.288	
endógenas	Dpoc_fr	2.846	0.065	4.380	0.016	10.265	0.000	
retardadas	Dpoc_ru	0.971	0.384	1.076	0.347	0.348	0.707	
Test LR - ficticias esta	acionales	85.783	0.000					
LR - outliers		49.562	0.000					
	\mathbb{R}^2	0.754		0.667		0.657		
Ajuste	R ^{2 corregido}	0.684		0.572		0.559		
	Skewness	0.685	0.753	-0.153	0.439	1.388	0.917	
Normalidad	Kurtosis	0.454	0.675	0.092	0.536	0.101	0.540	
	JB	1.333	0.514	0.198	0.906	2.120	0.347	
	LB-3	1.004	0.316	0.045	0.831	0.812	0.368	
Autocorrelación	LB-6	1.285	0.864	1.784	0.775	5.866	0.209	
	LB-12	8.682	0.563	11.074	0.352	17.235	0.069	
	ARCH-3	6.721	0.081	0.222	0.974	1.768	0.622	
ARCH	ARCH-6	7.840	0.250	8.745	0.188	3.625	0.727	
	ARCH-12	13.349	0.344	18.365	0.105	5.887	0.922	
Cuitania da calacción	AIC	-34.666						
Criterio de selección	SIC/BIC	-32.966						

Cuadro 15. Estimación, contraste y diagnóstico de los Modelos VAR. Sector Maíz.

Sistema: Dpom_nac	Dpom_fr				
		Ecuación			
		Dpom_nac	(valor p)	Dpom_fr	(valor p)
Test F variables	Dpom_nac	0.747	0.478	4.255	0.018
endógenas retardadas	Dpom_fr	11.790	0.000	0.721	0.490
Test LR - ficticias estac	ionales	76.986	0.000		
LR - outliers		80.503	0.000		
A former	\mathbb{R}^2	0.775	0.741		
Ajuste	R ^{2 corregido}	0.712	0.668		
	Skewness	0.096	0.538	-0.945	0.172
Normalidad	Kurtosis	0.200	0.579	1.447	0.926
	JB	0.390	0.823	3.650	0.161
	LB-3	1.797	0.180	3.270	0.071
Autocorrelación	LB-6	6.492	0.165	5.212	0.266
	LB-12	10.206	0.423	11.300	0.335
	ARCH-3	3.948	0.267	4.807	0.187
ARCH	ARCH-6	5.271	0.510	5.406	0.493
	ARCH-12	10.176	0.601	5.967	0.918
Criterio de selección	AIC	-23.671			
Cinterio de selección	SIC/BIC	-22.537			

3.4.2. Modelo de Corrección del Error (VECM)

Dado que estamos en presencia de variables I(1) la cuestión que hay que tratar de resolver es si existen relaciones de cointegración. Si es así, la modelización multivariante correcta, pasaría por estimar un Modelo de Corrección del Error (VECM: *Vector Error Correction Model*) en el que se imponga la restricción del cointegración. No obstante, cuando el objetivo es la predicción, no ha quedado demostrada la superioridad de los Modelos de Corrección del Error sobre los modelos VAR, y por ello, en esta aplicación, se calculan predicciones con ambos, aún cuando se halle cointegración.

En los Cuadros 16 a 21 se presentan los resultados sobre cointegración. En ellos se muestra, primero, los resultados de la traza sobre el rango de cointegración. Cuando este es 1 (o superior), se presentan los parámetros estimados del largo plazo (coeficientes β y α), junto con el valor de la ratio de verosimilitud que contrasta su significatividad individual y el correspondiente valor de probabilidad. A continuación, se presentan los resultados de los contrastes efectuados sobre los parámetros β, tales como, el contraste de transmisión perfecta de cambios en los precios, ya sea en cambios absolutos cuando se modelizan las series sin transformar, o cambios porcentuales, cuando las series han sido transformadas en logaritmos neperianos (sistemas de ovino y porcino). Los modelos para todos los sectores parten de la misma especificación que los modelos VAR (número de retardos, ficticias estacionales centradas y variables ficticias de captación de valores atípicos). Para corroborar los resultados sobre el rango de cointegración aportados por el estadístico de la traza, este estadístico se aplica también sobre un modelo que tan sólo incluye ficticias estacionales. Se ha procedido de este modo porque, mientras la literatura teórica reconoce que las ficticias estacionales centradas no alteran la distribución del estadístico, ésta se puede ver sin embargo afectada por la introducción de otras variables exógenas, tales como las ficticias adicionales que se han incluido para captar valores anómalos.

Se puede destacar que existe cointegración en la mitad de los modelos estimados. En el sector vacuno, el precio en origen nacional está cointegrado con los precios en origen en Alemania y Francia. Los parámetros β del largo plazo son significativos así como los parámetros de corrección del error α , por lo que las tres series de precios reaccionan ante desequilibrios en el largo plazo, y ninguno de estos tres mercados lidera la evolución de los restantes. En este caso, por tanto, se efectuarán predicciones con el Modelo de Corrección del Error (VECM h).

Por el contrario, aunque en principio el estadístico de la traza indica la existencia de cointegración entre el precio de la lonja de Binéfar y los mercados alemán y francés, los resultados sobre la significatividad individual de los tres parámetros β contradice este hecho, ya que ninguno de estos parámetros resulta significativo. Por ello, el modelo correctamente especificado sería un VAR en diferencias (VARd h). Asimismo, aunque el test de la traza aplicado sobre la especificación completa en el modelo vertical entre el precio en origen nacional y el precio al consumo señala la existencia de un vector de cointegración, este resultado contradice el aportado por el mismo estadístico aplicado a un modelo sin ficticias impulso de valores atípicos. La ausencia de cointegración queda además reforzada además por el hecho de que el parámetro estimado para el precio al consumo es estadísticamente nulo. Por ello, concluimos que no existe cointegración entre el precio en origen y el precio al consumo de vacuno. Tampoco se halla cointegración entre el precio de la lonja de Binéfar y el precio al consumo. Por tanto, el modelo correctamente especificado en ambos casos sería un VAR en diferencias (VARd v). En conclusión, en el sector vacuno se detecta evidencia a favor de la existencia de relaciones a largo plazo entre los mercados en origen de distintos países europeos, pero no entre los precios en distintas etapas de la cadena.

En el sector ovino, se halla cointegración en los cuatro modelos estimados, dos correspondientes a la modelización horizontal, entre el precio agregado nacional y el precio en Francia, y entre el precio en la lonja del Ebro y el precio francés; y dos en la modelización vertical, que incluye el precio al consumo, junto al precio en origen nacional o en la lonja del Ebro. El precio francés parece ejercer cierto liderazgo frente a la lonja del Ebro, aunque no frente al agregado nacional. Asimismo, el precio al consumo es débilmente exógeno respecto al largo plazo, tanto en su relación con el precio en origen nacional como regional. En otras palabras, ante desequilibrios en el largo plazo, el precio al consumo no reacciona para corregirlos, por lo que se puede interpretar como causante de los precios en origen, mientras que no es causado por ellos.

En el sector porcino, los precios en origen evolucionan ligados a los precios en Francia y Holanda, pero no se encuentra ningún liderazgo claro. Por el contrario, los precios en origen y al consumo no están cointegrados, por lo que no les liga una relación estable a largo plazo. Por tanto, en el sector porcino los modelos correctamente especificados son VECM horizontal (VECM h) y VAR en diferencias vertical (VARd v).

Los precios en origen del pollo, no mantienen ninguna relación de cointegración, ni con el precio francés, ni con los precios al consumo. En este caso por tanto, lo correcto es aplicar un VAR en diferencias (VARd h y VARd v).

En el sector de cebada también se detecta una ausencia de cointegración o de evolución conjunta entre el precio español y los precios francés y británico. Por tanto, en el sector cebada, el modelo correctamente especificado es un VAR en diferencias (VARd h).

Por último, el precio español de maíz sí que aparece ligado al precio francés, tal y como detecta el estadístico de la traza, si bien esta evidencia no es muy fuerte debido a que uno de los parámetros del largo plazo es nulo. Tentativamente mantenemos este modelo (VECM h).

Un resultado que se repite en todos los sectores salvo en ovino, es la ausencia de cointegración entre el precio en origen y el precio al consumo, lo que pone de manifiesto la desconexión entre las fluctuaciones de los precios en origen y al consumo.

Cuadro 16. Estimación y contraste de los Modelos VECM. Sector Vacuno.

a) Pov_nac Pov_al Pov_fr						
r=	V.C. 90%	V.C. 95%	Test Traza	Test Traza (sin dummies)		
0	32.370	35.190	37.419	25.252		
<=1	17.950	20.120	7.907	13.150		
<=2	7.620	9.170	1.486	3.818		
	Pov_nac	Pov_al	Pov_fr	Cte		
Beta	1.000	-1.305	1.597	-3.912		
Test LR	4.090	9.234	8.741	17.536		
Valor p	0.043	0.002	0.003	0.000		
Ho:(1 -1 * * *)	LR (valor p)	0.298	0.585			
Ho:(1 * -1 * *)	LR (valor p)	20.780	0.000			
Ho:(* 1 -1 * *)	LR (valor p)	0.467	0.495			
	Dpov_nac	Dpov_al	_Dpov_fr			
Alpha	-0.066	0.009	-0.071			
Test LR	23.541	3.326	22.636			
Valor p	0.000	0.083	0.000			

b) Pov_nac Pcv	b) Pov_nac Pcv_nac						
<u>r=</u>	V.C. 90%	V.C. 95%	Test Traza	Test Traza (sin dummies)			
0	17.950	20.120	26.445	12.718			
<=1	7.620	9.170	4.695	4.223			
	Pov_nac	Pcv_nac	Cte				
Beta	1.000	0.302	-5.232				
Test LR	10.165	2.423	8.625				
Valor p	0.001	0.120	0.003				
Ho:(1 -1 * *)	LR (valor p)	11.186	0.001				
	Dpov_nac	DPcv_nac					
Alpha	-0.097	-0.014					
Test LR	16.448	1.222					
Valor p	0.000	0.269					

c) Pov_lbin Pov	_al Pov_fr			
r=	V.C. 90%	V.C. 95%	Test Traza	Test Traza (sin dummies)
0	32.370	35.190	49.958	41.248
<=1	17.950	20.120	16.101	16.175
<=2	7.620	9.170	0.745	2.306
	Pov_lbin	Pov_al	Pov_fr	Cte
Beta	1.000	-0.812	2.569	-8.284
Test LR	2.271	0.546	2.803	17.118
Valor p	0.132	0.460	0.094	0.000
Ho:(1 -1 * * *)	LR (valor p)	0.014	0.908	
Ho:(1 * -1 * *)	LR (valor p)	8.192	0.004	
Ho:(* 1 -1 * *)	LR (valor p)	7.026	0.008	
	Dpov_lbin I	Dpov_al D	pov_fr	
Alpha	-0.029	-0.016	-0.043	
Test LR	11.292	7.151	18.747	
Valor p	0.001	0.008	0.000	

d) Pov_lbin	Pcv_nac				
r=	V.C. 90%	V.C. 959	% Tes	t Traza	Test Traza (sin dummies)
0	17.95	0 2	20.120	10.569	9.377
<=1	7.62	0	9.170	4.505	3.647

Cuadro 17. Estimación y contraste de los Modelos VECM. Sector Ovino.

a) Poo_nac Poo_fr				
r=	V.C. 90%	V.C. 95%	Test Traza	Test Traza (sin dummies)
0	17.950	20.120	38.170	
<=1	7.620	9.170	1.965	
	Poo_nac	Poo_fr	Cte	
Beta	1.000	-0.538	-0.596	
Test LR	34.164	24.141	19.505	
Valor p	0.000	0.000	0.000	
Ho:(1 -1 * *)	LR (valor p)	21.999	0.000	
	Dpoo_nac	Dpoo_fr		
Alpha	-0.432	0.157		
Test LR	14.498	5.241		
Valor p	0.000	0.022		

b) Poo_nac Pco_nac				
r=	V.C. 90%	V.C. 95%	Test Traza	Test Traza (Sin dummies)
0	17.950	20.120	23.846	26.359
<=1	7.620	9.170	1.129	2.002
	Poo_nac	Pco_nac	Cte	
Beta	1.000	-0.756	0.149	
Test LR	20.009	9.798	0.305	
Valor p	0.000	0.002	0.581	
Ho:(1 -1 * *)	LR (valor p)	4.166	0.041	
	Dpoo_nac	Dpco_nac		
Alpha	-0.465	-0.011		
Test LR	15.722	0.055		
Valor p	0.000	0.814		

c) Poo_eb Poo_fr				m . m
r=	V.C. 90%	V.C. 95%	Test Traza	Test Traza (Sin dummies)
0	17.950	20.120	30.717	28.929
<=1	7.620	9.170	1.633	2.041
	Poo_eb	Poo_fr	Cte	
Beta	1.000	-0.446	-1.087	
Test LR	27.412	17.195	20.858	
Valor p	0.000	0.000	0.000	
Ho:(1 -1 * *)	LR (valor p)	18.318	0.000	
	Dpoo_eb	Dpoo_fr		
Alpha	-0.431	0.126		
Test LR	16.540	3.735		
Valor p	0.000	0.053		

d) Poo_eb Pco_nac					
r=	V.C. 90%	V.C. 95%	Test Traza	Test Traza (sin dummies)	
0	17.950	20.120	20.529	30.915	
<=1	7.620	9.170	0.418	2.156	
	Poo_eb	Pco_nac	Cte		
Beta	1.000	-0.618	-0.481		
Test LR	18.674	8.244	2.927		
Valor p	0.000	0.004	0.087		
Ho:(1 -1 * *)	LR (valor p)	6.615	0.000		
	Dpoo_Eb	Dpco_nac			
Alpha	-0.402	0.004			
Test LR	13.886	0.007			
Valor p	0.000	0.932			

Cuadro 18. Estimación y contraste de los Modelos VECM. Sector Porcino.

a) Pop_nac Pop_Fr Pop_hol							
r=	V.C. 90%	V.C. 95%	Test Traza	Test Traza (sin dummies)			
0	32.370	35.190	37.474	40.914			
<=1	17.950	20.120	8.788	9.514			
<=2	7.620	9.170	2.739	3.520			
	Pop_nac	Pop_fr	Pop_hol	Cte			
Beta	1.000	-0.651	-0.368	-0.071			
Test LR	20.583	11.738	7.703	6.508			
Valor p	0.000	0.006	0.005	0.0107			
Ho:(1 -1 * *)	LR (valor p)	5.042	0.024				
Ho: (1 * -1 * *)	LR (valor p)	13.200	0.000				
Ho: (* 1 -1 *)	LR (valor p)	20.482	0.000				
	Dpop_nac	Dpop_fr	Dpop_hol				
Alpha	-0.543	0.139	0.079				
Test LR	8.397	16.084	16.813				
Valor p	0.004	0.000	0.000				

b) Pop_nac	Pcp_nac			
r=	V.C. 90%	V.C. 95%	Test Traza	Test Traza (sin dummies)
0	17.950	20.120	3.205	9.140
<=1	7.620	9.170	0.569	1.463

Cuadro 19. Estimación y contraste de los Modelos VECM. Sector Pollo.

a) Popl_nac Popl_fr					
r=	V.C. 90%	V.C. 95%	Test Traza	Test Traza (sin dummies)	
0	17.950	20.120	14.260	18.879	
<=1	7.620	9.170	4.486	8.463	

b) Popl_nac Pcpl_nac					
r=	V.C. 90%	V.C. 95%	Test Traza	Test Traza (sin dummies)	
0	17.950	20.120	11.008	11.855	
<=1	7.620	9.170	1.760	1.624	

Cuadro 20. Estimación y contraste de los Modelos VECM. Sector Cebada.

Poc_nac Poc_fr Poc_ru							
r=	V.C. 90%	V.C. 95%	Test Traza	Test Traza (sin dummies)			
0	32.370	35.190	29.139	33.807			
<=1	17.950	20.120	11.328	15.687			
<=2	7.620	9.170	3.963	6.335			

Cuadro 21. Estimación y contraste de los Modelos VECM. Sector Maíz.

Pom_nac Pom_fr							
r=	V.C. 90%	V.C. 95%	Test Traza	Test Traza (sin dummies)			
0	17.950	20.120	20.710	20.619			
<=1	7.620	9.170	2.780	3.212			
	Pom_nac	Pom_fr	cte				
Beta	1.000	-1.567	0.056				
Test LR	2.219	8.253	1.468				
Valor p	0.136	0.004	0.226				
Ho:(1 -1 * *)	LR (valor p)	3.769	0.052				
	Dpom_nac	Dpom_fr					
Alpha	-0.071	0.039					
Test LR	10.862	0.616					
Valor p	0.001	0.433					

3.5. Evaluación de Predicciones

Las series que son objeto de predicción son los precios agrarios o precios en los mercados en origen, nacionales y aragoneses. Entre los precios aragoneses, se predicen los precios de vacuno en la lonja de Binéfar y los de ovino en la lonja del Ebro. Las predicciones del precio de maíz en la lonja del Ebro fueron analizadas en Karahan (2003). Cada una de estas series de precios, han sido predichas mediante el uso de los modelos ARIMA, VAR y VECM, especificados y presentados en la sección 3.4. Estos modelos fueron estimados con observaciones entre enero de 1997 y junio de 2004. A partir de esta fecha, se realizan predicciones 1, 3 y 6 meses hacia delante.

El cálculo de las medidas de precisión requiere disponer de un conjunto de predicciones realizadas para cada horizonte temporal. Esto se consigue, desplazando la fecha inicial del periodo post-muestral como se explicó en la sección 2.1. De este modo, disponemos de 18 predicciones un período hacia delante, 16 predicciones tres períodos hacia delante y 13 predicciones seis períodos hacia delante. En los modelos VAR en diferencias y VECM, se predicciones combios en las variables. Por tanto, para poder comparar estas predicciones con las series originales, es preciso deshacer esta transformación.

Se han calculado también (aunque no son objeto de evaluación) predicciones dinámicas para el período post-muestral julio 2004 hasta diciembre 2005. Mientras que la predicción estática 1 período hacia delante utiliza información real hasta el mes anterior al que se desea predecir, la predicción dinámica, por el contrario, utiliza información real solamente hasta el último período muestral, esto es junio de 2004, y a partir de ese momento,

se utilizan predicciones en lugar de valores reales. Esta predicción dinámica equivale a predecir desde un mes hacia delante hasta 18 meses adelante, de ahí que, conforme aumenta la distancia temporal con junio de 2004, el error aumente notablemente. Todas las predicciones han sido realizadas en el paquete RATS, y se recogen en anexos.

A modo de ilustración en los Gráficos 7 a 14, se presentan las series originales junto con las predicciones estáticas (o 1 período hacia delante) y dinámicas, para cada una de las series de precios.

Gráfico 7. Valor real, predicción estática y dinámica. Sector vacuno. Serie Pov_nac.

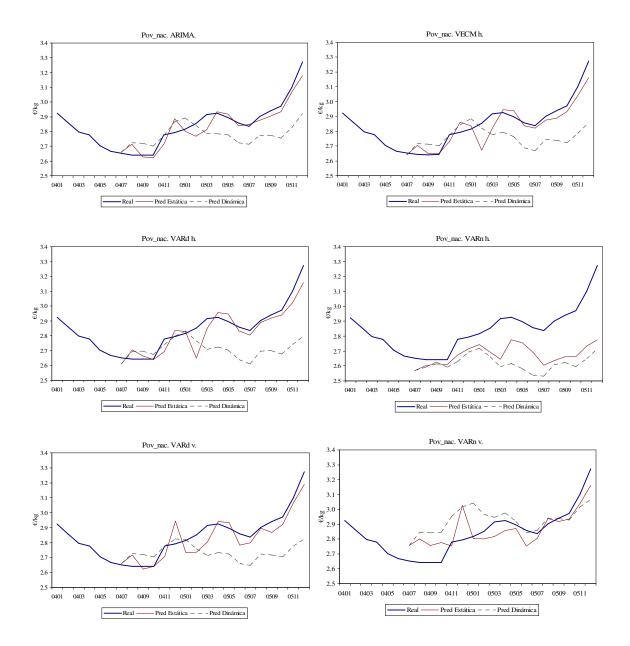


Gráfico 8. Valor real, predicción estática y dinámica. Sector vacuno. Serie Poa_lbin.

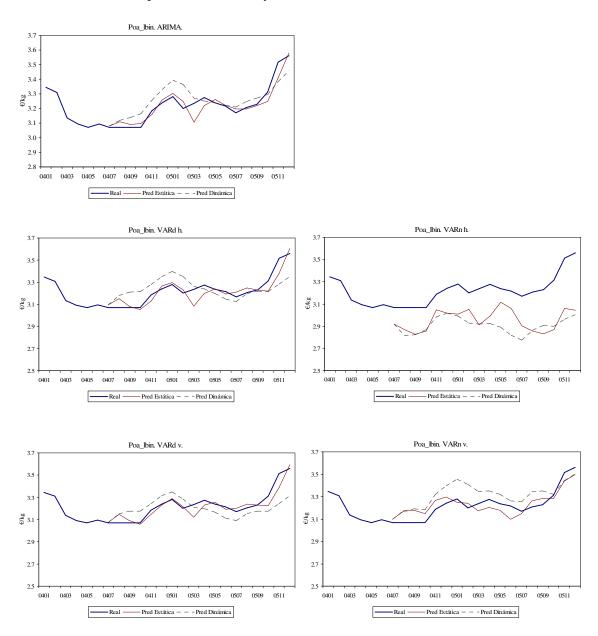


Gráfico 9. Valor real, predicción estática y dinámica. Sector ovino. Serie Poo_nac.

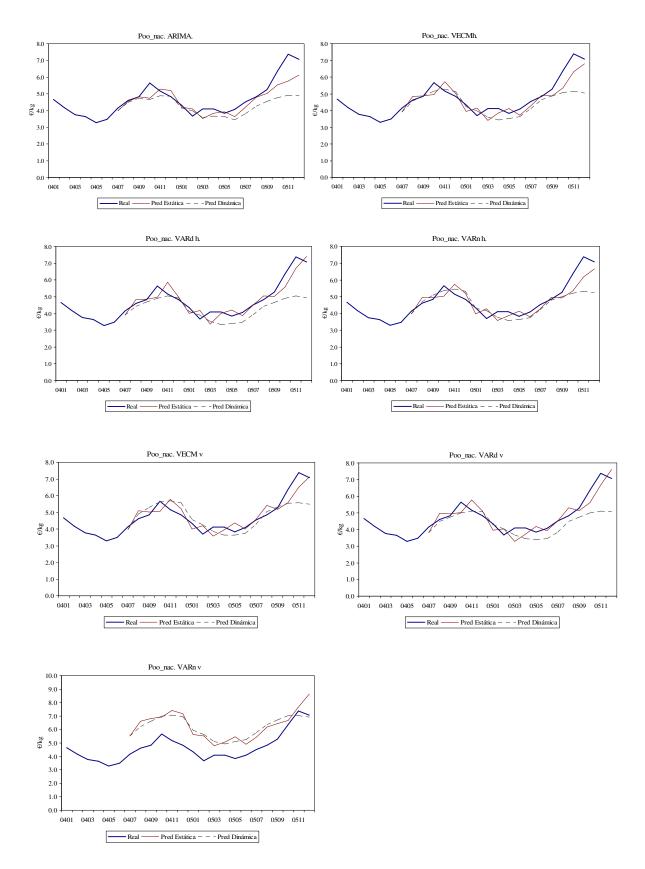


Gráfico 10. Valor real, predicción estática y dinámica. Sector ovino. Serie Poo_eb.

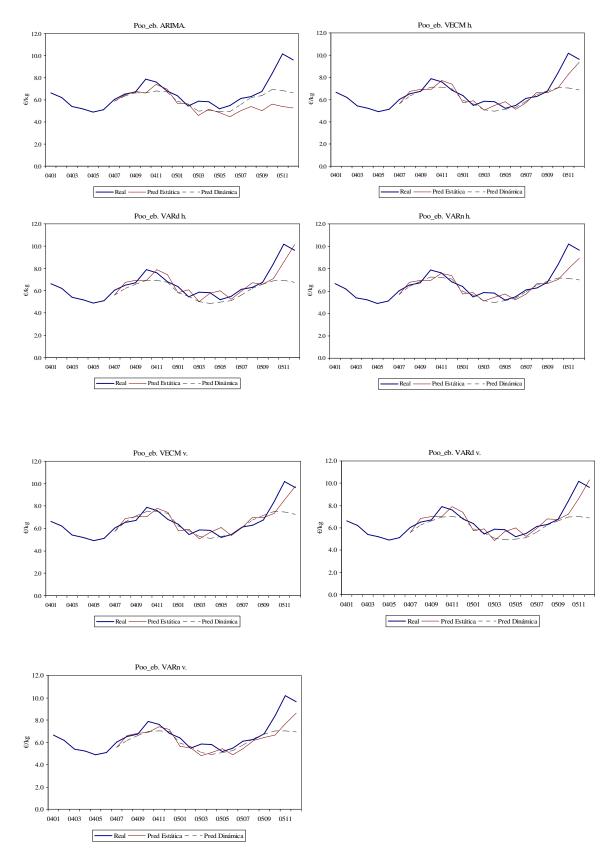


Gráfico 11. Valor real, predicción estática y dinámica. Sector porcino. Serie Pop_nac.

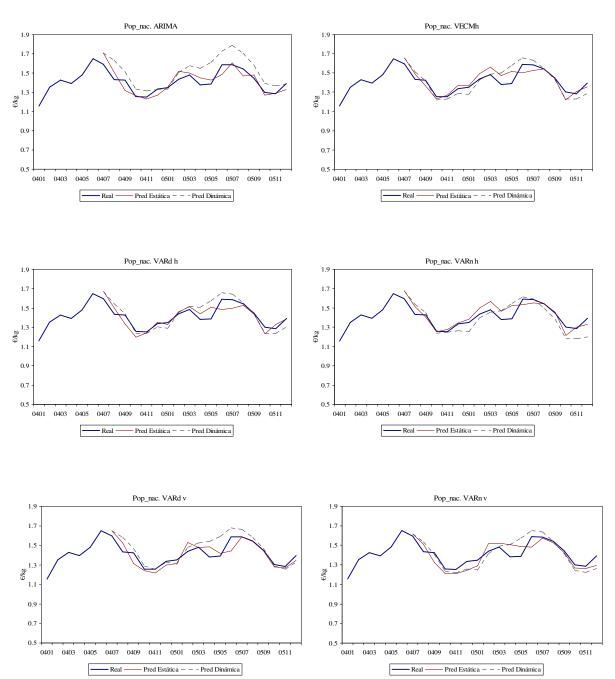
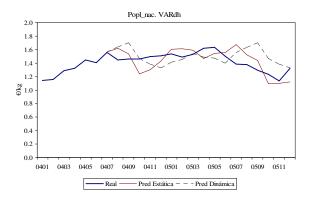
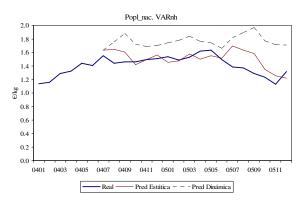
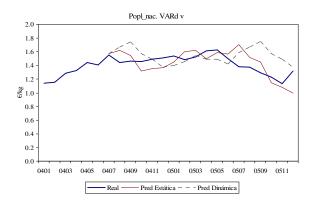





Gráfico 12. Valor real, predicción estática y dinámica. Sector pollo. Serie Popl_nac.

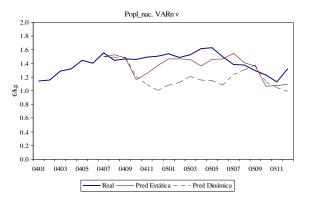
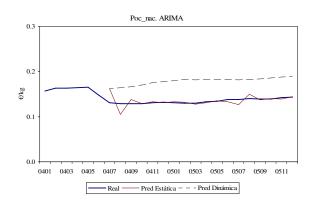
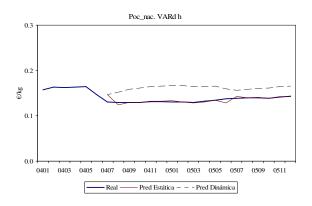




Gráfico 13. Valor real, predicción estática y dinámica. Sector cebada. Serie Poc_nac.

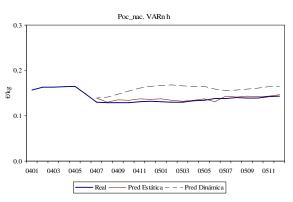
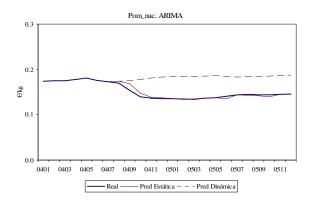
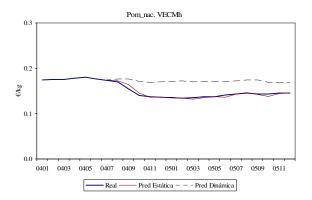
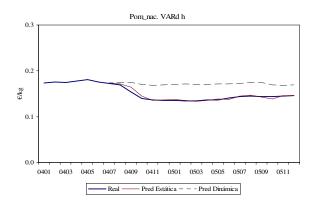
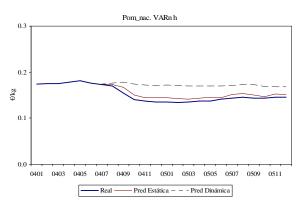






Gráfico 14. Valor real, predicción estática y dinámica. Sector maíz. Serie Pom_nac.

Asimismo, para tener una primera impresión visual de la bondad de las predicciones provenientes de modelos alternativos, en los Gráficos 15 a 22 se presentan, simultáneamente, la predicción estática o un período hacia delante, generada por cada uno de los modelos. Un elemento común a todos estos gráficos es que, las predicciones generadas por los modelos VAR aplicados a las series de precios en niveles, aportan predicciones que tienden a alejarse más de los valores reales que las generadas por cualquier otro modelo, mientras que las predicciones de los modelos VAR con las series transformadas en diferencias se mantienen próximas a las obtenidas con modelos de corrección del error (VECM) donde se impone la restricción de cointegración, e incluso a las generadas por los modelos univariantes ARIMA.

Gráfico 15. Valor real y predicciones estáticas generadas por modelos alternativos. Sector vacuno. Serie Pov_nac.

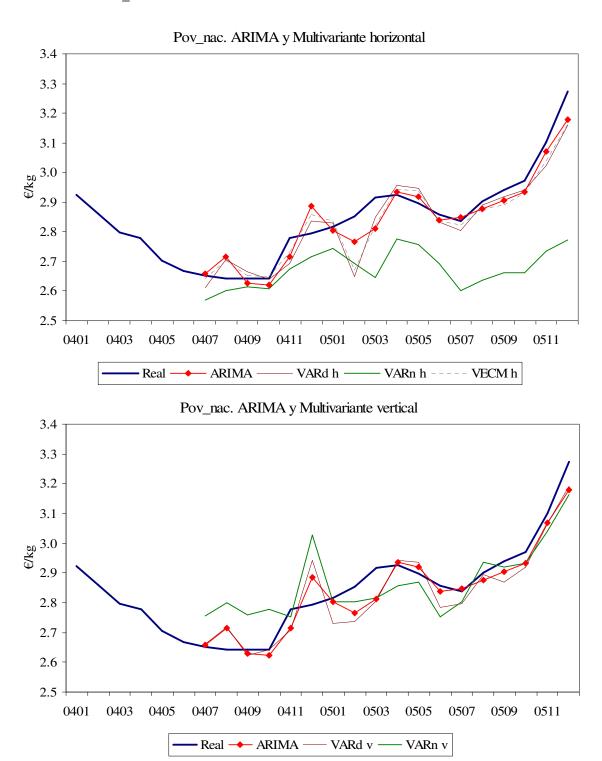
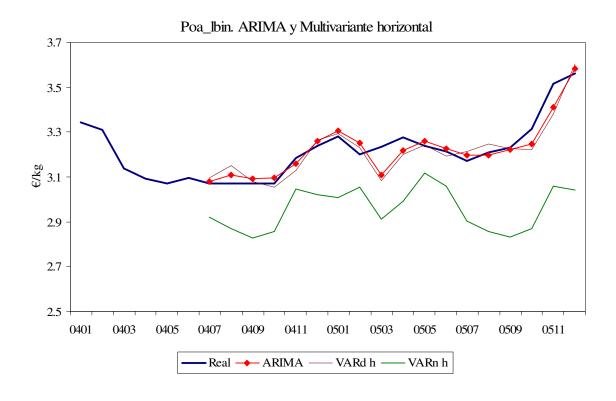



Gráfico 16. Valor real y predicciones estáticas generadas por modelos alternativos. Sector vacuno. Serie Pov_lbin.

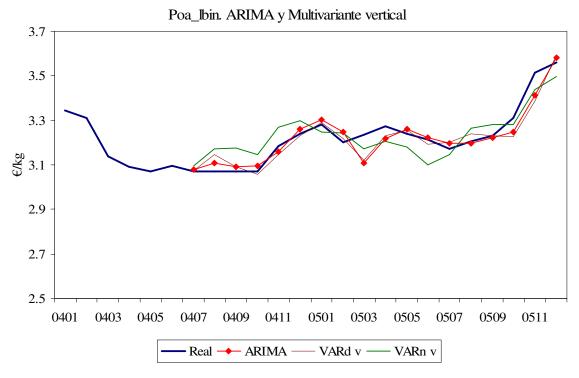
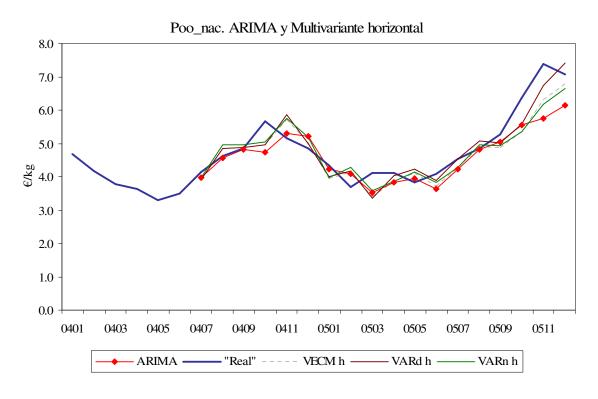



Gráfico 17. Valor real y predicciones estáticas generadas por modelos alternativos. Sector ovino. Serie Poo_nac.

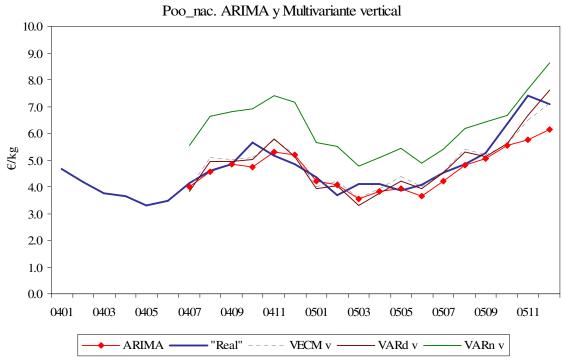
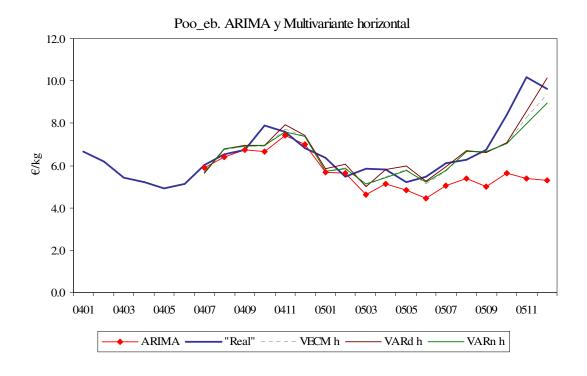



Gráfico 18. Valor real y predicciones estáticas generadas por modelos alternativos. Sector ovino. Serie Poo_eb.

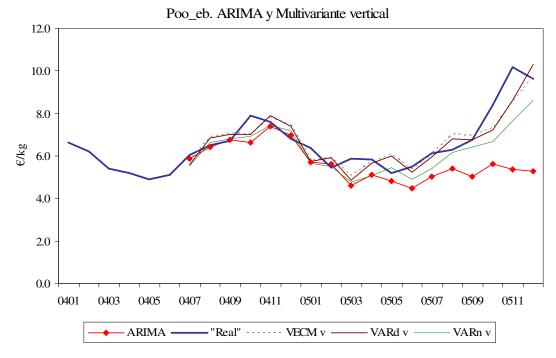
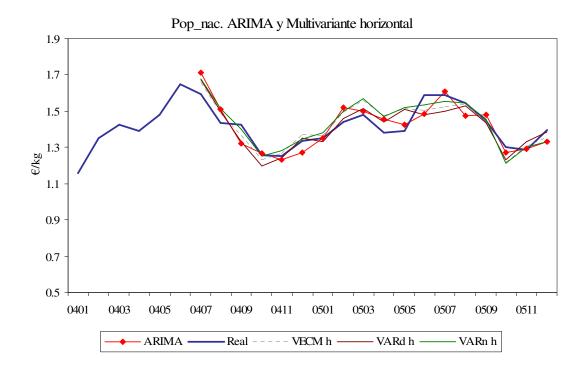



Gráfico 19. Valor real y predicciones estáticas generadas por modelos alternativos. Sector porcino. Serie Pop_nac.

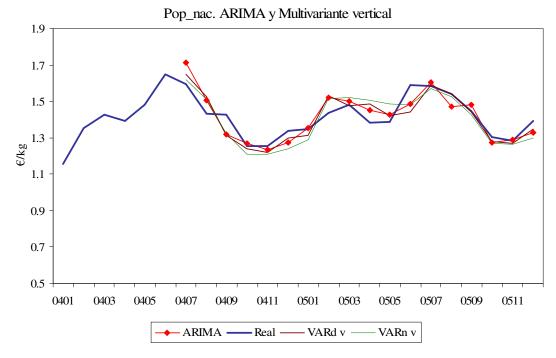
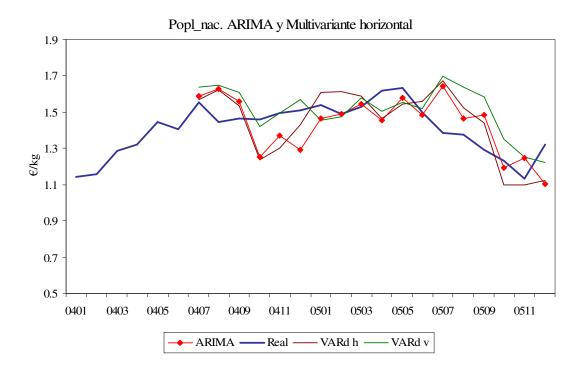



Gráfico 20. Valor real y predicciones estáticas generadas por modelos alternativos. Sector pollo. Serie Popl_nac.

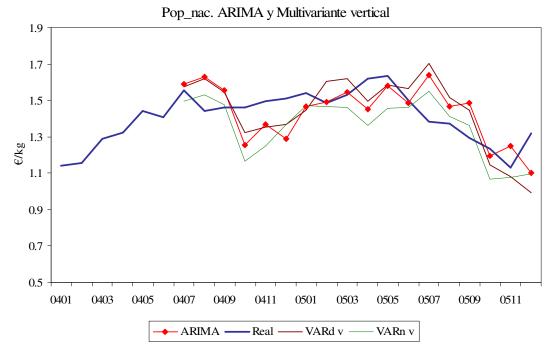


Gráfico 21. Valor real y predicciones estáticas generadas por modelos alternativos. Sector cebada. Serie Poc_nac.

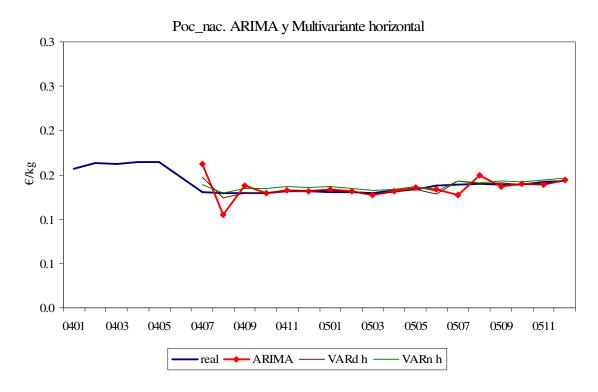
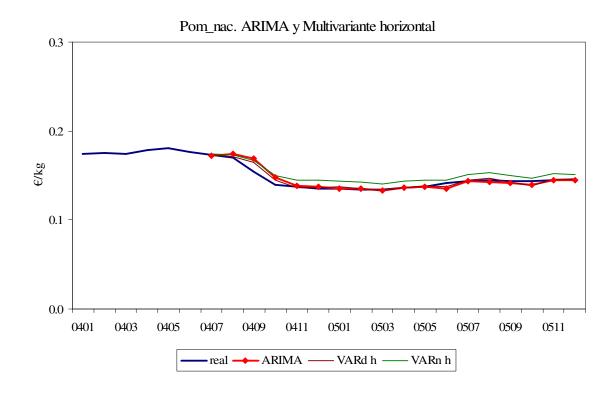



Gráfico 22. Valor real y predicciones estáticas generadas por modelos alternativos. Sector maíz. Serie Pom_nac.

Para dar un contenido cuantitativo a estas apreciaciones visuales, a continuación, en los Cuadros 22 a 26 se presentan algunas de las medidas discutidas en la sección 2.1 para evaluar la precisión de las predicciones. Estos cálculos se han llevado a cabo en GAUSS. En concreto, se presentan el Error Cuadrático Medio (ECM) y el Error Porcentual Absoluto Medio (EPAM). Entre las transformaciones alternativas, VAR en niveles (VARn), VAR en diferencias (VARd) y Modelo de Corrección del Error (VECM) dentro de cada tipo de modelización multivariante, horizontal (h) o vertical (v), se indica, para cada horizonte de predicción (h), que transformación arroja el mínimo valor de la medida de precisión, y por tanto, en principio, es preferible. Finalmente, se indica qué modelización y transformación arroja los mínimos valores globales.

En general, al comparar entre transformaciones alternativas para la modelización horizontal o vertical multivariante, si existe un Modelo de Corrección del Error, éste suele ser el que arroja el mínimo Error Cuadrático Medio (ECM), mientras que cuando este modelo no está presente por no haberse hallado cointegración, el VAR en diferencias suele ser preferido al VAR en niveles, es decir, las medidas de precisión tienden en general a seleccionar como modelos multivariantes que generan las mejores predicciones modelos que están correctamente especificados en relación con las propiedades estocásticas de las series. Asimismo, al comparar modelos multivariantes con univariantes, en términos generales, los primeros parecen arrojar mejores predicciones que los segundos. Por último, entre la modelización horizontal y vertical, las medidas de precisión indican con mayor frecuencia un mejor comportamiento de los primeros.

No obstante, estas tendencias globales, ocultan una heterogénea casuística, de forma que, pueden hallarse inconsistencias entre el ranking de modelos de acuerdo a las dos medidas de precisión utilizadas (Error Cuadrático Medio y Error Porcentual Absoluto Medio), así como para distintos horizontes temporales de predicción, o distintas modelizaciones y transformaciones son seleccionadas para distintas series de precios. Así, en ocasiones, el VECM se sustituye por el VAR en diferencias (ej. porcino horizontal, Cuadro 24), en otras, el VAR en niveles presenta mayor precisión que el VAR en diferencias (ej. cebada, Cuadro 25; pollo horizontal, Cuadro 24), y para algunas series, y horizontes temporales, el ARIMA se convierte en el modelo que predice con mayor precisión (p.ej. precios de vacuno, nacional y lonja de Binéfar, Cuadro 22).

Cuadro 22. Medidas de precisión de la predicción. Sector Vacuno.

		Pov_nac			Poa Ibin		
			ARIMA		10a_10111	ARIMA	
			h=3	h 6	h=1		h=6
	ECM		0.012			0.009	
	EPAM EPAM			0.025			0.010 2.699
-	EPAM	1.472	2.872 VAR d	4.886	1.132	2.277 VAR d	2.099
		h_1		h_6	h=1		h_6
	ECM						
					0.003 1.343		
	EPAM	1.739	VECM	3.487	1.343	VECM	3.804
_		l ₂ 1		h 6	L 1		1. 6
Horizontal	ECM			0.027	h=1		-
izo	EPAM					•••	•••
Hoi	EPAM			4.892		 VARn	•••
			VARn	h 6	h=1		h 6
	ECM						
	ECM				0.014		
	EPAM Min ECM	3.546 VECM	5.681 VECM	8.130 VECM	3.213 VARd		5.226 VARd
	Min ECM Min EPAM	VECM	VARd	VECM		VARd	VARd
	141111 231 7 1141	V ECIVI	VIII	v Ecivi	VIII	VIII	771144
			VARd			VARd	
		h=1	h=3	h=6	h=1	h=3	h=6
	ECM				0.003		
ical	EPAM	1.867	3.415	5.045	1.147	2.546	3.476
Vertical			VARn			VARn	
>		h=1	h=3	h=6	h=1	h=3	h=6
	ECM	0.009	0.022	0.045	0.004	0.010	0.024
	EPAM	2.961	4.595	6.904	1.678	2.515	4.487
	Min ECM	VARd	VARd	VARd	VARd	VARn	VARd
	Min EPAM	VARd	VARd	VARd	VARd	VARn	VARd
	Min ECM	ARIMA	ARIMA	ARIMA	ARIMA	ARIMA	ARIMA
	Min EPAM	ARIMA	ARIMA	ARIMA	ARIMA	ARIMA	ARIMA

Cuadro 23. Medidas de precisión de la predicción. Sector Ovino.

			Poo_nac		1	Poo_eb2	
			ARIMA			ARIMA	
		h=1	h=3	h=6	h=1	h=3	h=6
	ECM	0.277	0.388	0.472	0.601	1.481	1.443
' ———	EPAM	6.964	7.823	9.847	7.431	10.140	10.124
		VAR d			VAR d		Ì
		h=1	h=3	h=6	h=1	h=3	h=6
	ECM	0.197	0.502	0.529	0.478	1.245	1.253
	EPAM	7.228	8.795	10.177	7.508	9.163	8.266
			VECM			VECM	
tal		h=1	h=3	h=6	h=1	h=3	h=6
Horizontal	ECM	0.193	0.253	0.962	0.524	1.321	1.631
oriż	EPAM	7.301	8.188	12.721	7.962	8.854	9.785
三			VARn			VARn	
		h=1	h=3	h=6	h=1	h=3	h=6
	ECM	0.274	0.687	0.824	0.583	1.186	1.413
	EPAM	8.432	9.977	11.255	7.826	8.128	9.361
	Min ECM	VECM	VECM	VARd	VARd	VARn	VARd
	Min EPAM	VARd	VECM	VARd	VARd	VARn	VARd
			VARd			VARd	
		h=1	h=3	h=6	h=1	h=3	h=6
	ECM	0.217	0.520	0.529	0.475	1.175	1.169
	EPAM	7.979	10.095	11.471	7.622	9.134	8.328
			VECM			VECM	
ical		h=1	h=3	h=6	h=1	h=3	h=6
Vertical	ECM	0.214	0.411	0.414	0.443	0.845	0.850
	EPAM	7.856	9.127	9.692	7.609	8.705	9.204
			VARn			VARn	
		h=1	h=3	h=6	h=1	h=3	h=6
	ECM	2.499	1.798	1.742	0.640	1.412	1.559
	EPAM	31.653	26.514	26.777	8.045	9.634	9.679
	Min ECM	VECM	VECM	VECM	VECM	VECM	VECM
	Min EPAM	VECM	VECM	VECM	VECM	VECM	VARd
Globa	Min ECM	VECM h	VECM h	VECMv	VECMv	VECMv	VECM
	Min EPAM	ARIMA	ARIMA	VECMv	ARIMA	VARn h	VARd h

Cuadro 24. Medidas de precisión de la predicción. Sectores Porcino y Pollo.

		Pop_nac			Popl_nac		
			ARIMA		•	ARIMA	
		h=1	h=3	h=6	h=1	h=3	h=6
	ECM	0.004	0.009	0.011	0.020	0.052	0.058
	EPAM	3.534	5.552	6.348	8.339	14.157	16.010
			VAR d			VAR d	
		h=1	h=3	h=6	h=1	h=3	h=6
	ECM	0.005	0.010	0.016	0.020	0.060	0.059
	EPAM	3.988	6.040	7.519	8.433	14.405	16.401
			VECM			VECM	
ıtal		h=1	h=3	h=6	h=1	h=3	h=6
Horizontal	ECM	0.004	0.016	0.027			
OII	EPAM	3.543	6.593	9.511			
工			VARn			VARn	
		h=1	h=3	h=6	h=1	h=3	h=6
	ECM	0.004	0.014	0.017	0.018	0.051	0.052
	EPAM	3.572	6.240	7.841	7.753	13.186	13.820
	Min ECM Min EPAM	VECM VECM	VARd VARd	VARd VARd	VARn VARn	VARn VARn	VARn VARn
	MIIII EPAM	VECM	VARd	VARu	VARII	VARII	VAKII
		h=1	h=3	h=6	h=1	h=3	h=6
	ECM	0.004	0.010	0.012	0.021	0.066	0.088
	EPAM						ì
	LIAW	3.362	5.841 VECM	6.714	8.598	14.441 VECM	19.741
		h=1	h=3	h=6	h=1	h=3	h=6
Vertical	ECM	11-1	11–3	11-0	11-1	11-3	11-0
Ver	EPAM						
			VARn			VARn	
		h=1	h=3	h=6	h=1	h=3	h=6
	ECM	0.005	0.015	0.018	0.020	0.071	0.083
	EPAM	4.409	7.215	8.290	7.623	15.097	16.733
	Min ECM	VARd	VARd	VARd	VARn	VARd	VARn
	Min EPAM	VARd	VARd	VARd	VARn	VARd	VARn
Globa 1	Min ECM	VECM h	ARIMA	ARIMA	VARn h	VARn h	VARn h
	Min EPAM	VAR d	ARIMA	ARIMA	VARn v	VARn h	VARn h

Cuadro 25. Medidas de precisión de la predicción. Sectores Cebada y Maíz.

		Poc_nac			Pom_nac		
			ARIMA			ARIMA	
		h=1	h=3	h=6	h=1	h=3	h=6
	ECM*	0.073	0.195	0.479	0.018	0.236	0.581
	EPAM	3.290	7.606	13.356	1.718	6.989	12.949
			VAR d			VAR d	
		h=1	h=3	h=6	h=1	h=3	h=6
	ECM*	0.0260	0.112	0.207	0.011	0.108	0.234
	EPAM	2.184	6.030	8.366	1.712	5.066	7.900
			VECM			VECM	
ıtal		h=1	h=3	h=6	h=1	h=3	h=6
Horizontal	ECM*				0.011	0.113	0.247
Orri	EPAM				1.526	5.568	9.478
王			VARn			VARn	
		h=1	h=3	h=6	h=1	h=3	h=6
	ECM*	0.013	0.093	0.265	0.013	0.154	0.280
	EPAM	1.989	6.123	9.277	1.775	6.496	9.427
	Min ECM	VARn	VARn	VARd	VECM	VARd	VARd
	Min EPAM	VARn	VARd	VARd	VECM	VARd	VARd
Cl.1							
Globa 1	Min ECM	VARn h	VARn h	VARd h	VECM h	VARd h	VARd h
	Min EPAM	VARn h	VARd h	VARd h	VECM h	VARd h	VARd h

^{*} El error Cuadrático Medio está mulplicado por 1000

Lo que hay que discernir a continuación es si, estas diferencias que se observan en el ECM entre modelos, son estadísticamente diferentes. Con este fin, se ha aplicado el contraste de Diebold y Mariano (1995) (DM) así como el estadístico corregido por Harvey, Leybourne and Newbold (1997) (DM*). Estos estadísticos permiten comparar el ECM entre dos modelos, si bien, mientras que el último solo nos indica si estas medidas de precisión son iguales (hipótesis nula) o no, el estadístico DM nos indica, cuando se rechaza la hipótesis nula de igualdad, a favor de qué hipótesis alternativa se está rechazando, i.e., el Modelo 1 mejor que el Modelo 2 o viceversa. Teniendo en cuenta estas consideraciones, se ha procedido del siguiente modo.

Primero, dentro de la modelización horizontal, se comparan entre sí las predicciones del VAR en niveles y el VECM (cuando existe). Si el estadístico DM* indica que ambos ECM son estadísticamente iguales (no se rechaza la hipótesis nula) se selecciona el modelo que en principio está correctamente especificado, el VECM. Si, por el contrario, el DM* rechaza la hipótesis nula, observamos el estadístico DM, para comprobar cual de los dos modelos es mejor. A continuación, el modelo seleccionado en la fase anterior, se compara con el VAR en diferencias, y se utiliza el DM* y DM, del modo explicado. Si no se rechaza la

hipótesis nula, mantenemos el modelo que presenta una mejor especificación (ej. entre un VECM, un VAR en diferencias y un VAR en niveles, seleccionamos el primero, y entre los dos últimos, el VAR en diferencias, que respeta las propiedades estocásticas de las series).

En segundo lugar, se aplica el mismo procedimiento para seleccionar un modelo entre las tres transformaciones existentes para la modelización vertical. En tercer lugar, se comparan los dos modelos seleccionados como representantes de la modelización horizontal y vertical, aplicando el DM*. Si este estadístico no halla diferencias significativas entre ambos enfoques, se procede finalmente a comparar el modelo univariante con los dos modelos multivariantes, mientras que si el DM* detecta diferencias significativas entre ambas modelizaciones, utilizamos el DM para seleccionar cual de las dos es preferible, y únicamente este modelo se compara con el ARIMA.

Los valores de los estadísticos junto con el valor de probabilidad (valor p) se muestran en los Cuadros 26 a 31. Estos resultados provienen de la aplicación del procedimiento implementado en RATS para contrastar el test DM. Lo primero que llama la atención a la vista de estos cuadros es el escaso número casos para los cuales se rechaza la hipótesis nula (indicado en negrita). Es decir, existen escasas diferencias significativas en la precisión de las predicciones arrojadas por modelizaciones y transformaciones alternativas. Si atendiésemos solamente al estadístico original de Diebold y Mariano, sin embargo, se detectarían mayores diferencias, pero siguiendo las recomendaciones de varios autores (ej. Clements y Hendry, 2004) nos guiamos por el estadístico modificado, ya que posee mejores propiedades para cualquier horizonte de predicción y si los errores de predicción están autocorrelacionados o siguen distribuciones distintas a la normal.

A continuación, se detallan para cada serie, las principales implicaciones derivadas de la aplicación del contraste de comparación en la precisión de las predicciones. Entre los modelos multivariantes alternativos que modelizan las relaciones horizontales entre el precio de vacuno en España, Alemania y Francia, el Modelo de Corrección del Error genera predicciones estadísticamente más precisas que el VAR en niveles para cualquier horizonte temporal, aunque no significativamente diferentes de las del VAR en diferencias. En la modelización vertical, la especificación en diferencias se muestra superior a la especificación en niveles, al menos para las predicciones un período hacia delante. No se detectan diferencias en la precisión con que predice el mejor de los modelos horizontales (VECM h) y el mejor entre los verticales (VARd v). Finalmente, el VECM h se muestra igual de preciso que el ARIMA, mientras que éste último supera al VARd vertical, a un mes. En conclusión,

aunque entre los modelos multivariantes el VECM arroja, en general, predicciones más precisas, éstas no son significativamente mejores que las del modelo univariante. Entre diferencias y niveles, la transformación en diferencias genera mayor precisión en las predicciones.

Cuando en lugar del precio de vacuno a nivel nacional, se considera el precio regional en la lonja de Binéfar, la modelización horizontal (junto con los precios en Alemania y Francia) también prevalece el modelo en diferencias sobre los niveles, en tanto que en la modelización con el precio al consumo, no se hallan diferencias significativas. Al comparar entre el mejor modelo horizontal (VARd h) y el mejor vertical (en cuanto a especificación pero no en cuanto a precisión, VARn v), no se encuentras diferencias significativas. En otras palabras, la información proporcionada por los mercados internacionales es equiparable a la aportada por el precio al consumo, en términos de la precisión con que se predice el precio de vacuno en la lonja de Binéfar. Finalmente, el modelo ARIMA proporciona predicciones tan precisas como el VAR vertical, e incluso mejores para uno y tres meses hacia delante, en comparación con el VAR horizontal.

En la modelización multivariante del precio de ovino nacional, que incorpora el precio de Francia, la precisión en la predicción aportada por el VECM y el VAR en niveles, así como entre el VECM y el VAR en diferencias, es idéntica, salvo para el horizonte de predicción de tres meses, en que los modelos VAR predicen mejor. Asimismo, en la modelización vertical, el VECM predice con la misma precisión que un VAR en diferencias, mientras que se muestra claramente superior al VAR en niveles para cualquier horizonte temporal. La comparación entre la modelización horizontal y vertical arroja el mismo resultado que para el caso del precio de vacuno en la lonja de Binéfar, es decir, precios al consumo y mercados internacionales, tienen la misma capacidad predictiva. Finalmente, no se detectan diferencias significativas entre el modelo univariante y los multivariantes.

Los modelos alternativos que se utilizan en la predicción de los precios de ovino en la lonja del Ebro, y los precios de porcino a nivel nacional, generan predicciones con idéntica precisión. Es decir, ni los precios internacionales ni los precios al consumo contribuyen a mejorar la precisión respecto a un modelo univariante.

En la predicción del precio del pollo, no se encuentran diferencias significativas entre las especificaciones en diferencias o niveles, ni en la modelización horizontal (que incluye el precio francés) ni en la vertical. Sin embargo, sí se detecta, que en horizontes largos (seis meses) el modelo horizontal predice con más precisión que el vertical, si bien en comparación con el modelo univariante, la incorporación de series de precios adicionales no contribuyen a mejorar la precisión.

Por lo que respecta a la cebada, no existen diferencias apreciables entre el modelo multivariante especificado en niveles o diferencias. Por el contrario, el modelo multivariante genera predicciones significativamente más precisas que el modelo ARIMA, a tres y seis meses. Finalmente, algo similar ocurre en el caso del maíz, donde tampoco se detectan diferencias entre modelizar las relaciones multivariantes como un VAR en diferencias, en niveles o como Modelo de Corrección del Error, mientras que la precisión en la predicción a largo plazo (seis meses) resulta superior utilizando un modelo multivariante (VAR d) que el modelo univariante.

Cuadro 26. Estadístico Diebold-Mariano de contraste de igualdad en la precisión de la predicción. Sector vacuno*.

			Ha: 1 mejor	que 2	Ha: 2 mejor	que 1		
pov_nac		Horizonte	DM	valor p	DM	valor p	DM*	valor p
		h=1	-2.988	0.001	2.988	0.999	2.903	0.010
	VECM / VARn	h=3	-2.511	0.006	2.511	0.994	2.118	0.051
horizontal		h=6	-3.668	0.000	3.668	1.000	2.112	0.056
Horizontai		h=1	-1.441	0.075	1.441	0.925	1.400	0.179
	VECM / VARd	h=3	-0.451	0.326	0.451	0.674	0.380	0.709
		h=6	-2.031	0.021	2.031	0.979	1.169	0.265
		h=1	-3.558	0.000	3.558	1.000	3.458	0.003
vertical	VARd / VARn	h=3	-1.056	0.146	1.056	0.854	0.890	0.387
		h=6	-2.016	0.022	2.016	0.978	1.160	0.268
		h=1	-0.311	0.378	0.311	0.622	0.302	0.766
horiz/vert	VECMh/VARdv	h=3	-0.457	0.324	0.457	0.676	0.386	0.705
		h=6	-0.713	0.238	0.713	0.762	0.410	0.689
		h=1	-0.950	0.171	0.950	0.829	0.923	0.369
	ARIMA/VECMh	h=3	-0.974	0.165	0.974	0.835	0.821	0.425
univ/multi		h=6	-0.376	0.353	0.376	0.647	0.217	0.832
umv/mum		h=1	-2.860	0.002	2.860	0.998	2.779	0.013
	ARIMA/VARd v	h=3	-1.692	0.045	1.692	0.955	1.427	0.174
		h=6	-1.367	0.086	1.367	0.914	0.787	0.447
poa_lbin			DM	valor p	DM	valor p	DM*	valor p
		h=1	-3.399	0.000	3.399	1.000	3.304	0.004
horizontal	VARd/VARn	h=3	-2.572	0.005	2.572	0.995	2.169	0.047
		h=6	-2.123	0.017	2.123	0.983	1.222	0.245
		h=1	-2.052	0.020	2.052	0.980	1.994	0.062
vertical	VARd/VARn	h=3	0.534	0.703	-0.534	0.297	0.450	0.659
		h=6	-2.239	0.013	2.239	0.987	1.289	0.222
		h=1	1.785	0.963	-1.785	0.037	1.735	0.101
horiz/vert	VARdh/VARdv	h=3	1.633	0.949	-1.633	0.051	1.377	0.189
		h=6	1.122	0.869	-1.122	0.131	0.646	0.531
		h=1	-2.427	0.008	2.427	0.992	2.359	0.031
	ARIMA/VARd h	h=3	-2.572	0.005	2.572	0.995	2.169	0.047
univ/multi		h=6	-2.979	0.001	2.979	0.999	1.715	0.112
- am v/man		h=1	-0.517	0.303	0.517	0.697	0.502	0.622
	ARIMA/VARd v	h=3	-1.637	0.051	1.637	0.949	1.381	0.188
		h=6	-2.302	0.011	2.302	0.989	1.325	0.210

^{*} DM: estadístico de Diebold y Mariano (1995); DM*: estadístico DM modificado por Harvey, Leybourne y Newbold (1997). En negrita, se indican las parejas de modelos para las cuales se encuentran diferencias significativas en la precisión de la predicción.

Cuadro 27 Estadístico Diebold-Mariano de contraste de igualdad en la precisión de la predicción. Sector ovino*.

			Ha: 1 mejo	or que 2	Ha: 2 mejo	r que 1		
poo_nac		Horizonte	DM	valor p	DM	valor p	DM*	valor p
	VECM /	h=1	-0.546	0.293	0.546	0.707	0.531	0.603
	VECWI	h=3	2.529	0.994	-2.529	0.006	2.132	0.050
horizontal	V / IIXII	h=6	2.297	0.989	-2.297	0.011	1.322	0.211
Horizontai	VECM /	h=1	1.651	0.951	-1.651	0.049	1.605	0.127
	VARd	h=3	2.119	0.983	-2.119	0.017	1.786	0.094
		h=6	2.031	0.979	-2.031	0.021	1.169	0.265
	VECM /	h=1	-4.451	0.000	4.451	1.000	4.326	0.000
	VARn	h=3	-4.585	0.000	4.585	1.000	3.866	0.002
vertical		h=6	-3.468	0.000	3.468	1.000	1.996	0.069
	VECM /	h=1	-0.128	0.449	0.128	0.551	0.124	0.903
	VARd	h=3	-1.428	0.077	1.428	0.923	1.204	0.247
		h=6	-1.129	0.129	1.129	0.871	0.650	0.528
	VECMh /	h=1	0.918	0.821	-0.918	0.179	0.892	0.385
horiz/vert	VECMV	h=3	1.895	0.971	-1.895	0.029	1.598	0.131
		h=6	1.764	0.961	-1.764	0.039	1.015	0.330
	ARIMA /	h=1	0.265	0.605	-0.265	0.395	0.258	0.800
	VECM h	h=3	-1.878	0.030	1.878	0.970	1.584	0.134
univ/multi		h=6	-1.991	0.023	1.991	0.977	1.146	0.274
alli v/iliaiti	ARIMA /	h=1	0.600	0.726	-0.600	0.274	0.583	0.567
	VECM v	h=3	-0.351	0.363	0.351	0.637	0.296	0.771
	, EC1,1	h=6	0.612	0.730	-0.612	0.270	0.352	0.731
poo_eb2			DM	valor p	DM	valor p	DM*	valor p
	VECM /	h=1	-0.680	0.248	0.680	0.752	0.661	0.517
	VARn	h=3	2.042	0.979	-2.042	0.021	1.722	0.106
horizontal	, , , , , , , ,	h=6	1.680	0.953	-1.680	0.047	0.967	0.353
HOHZOHtai	VECM /	h=1	1.229	0.890	-1.229	0.110	1.194	0.249
	VARd	h=3	1.270	0.898	-1.270	0.102	1.071	0.301
		h=6	1.684	0.954	-1.684	0.046	0.969	0.352
	VECM /	h=1	-1.255	0.105	1.255	0.895	1.220	0.239
	VECM	h=3	-1.741	0.041	1.741	0.959	1.468	0.163
vertical		h=6	-1.479	0.070	1.479	0.930	0.851	0.411
Vertical	VECM /	h=1	-0.685	0.247	0.685	0.753	0.666	0.514
	VARd	h=3	-1.427	0.077	1.427	0.923	1.203	0.248
	VIIICG	h=6	-1.025	0.153	1.025	0.847	0.590	0.566
	VECMh /	h=1	1.026	0.847	-1.026	0.153	0.997	0.333
horiz/vert	VECMV	h=3	1.557	0.940	-1.557	0.060	1.312	0.209
		h=6	1.499	0.933	-1.499	0.067	0.863	0.405
	ARIMA /	h=1	0.632	0.736	-0.632	0.264	0.614	0.548
	VECMh	h=3	1.197	0.884	-1.197	0.116	1.009	0.329
univ/multi-	- V LCIVIII	h=6	-0.999	0.159	0.999	0.841	0.575	0.576
— univ/muitiv	ADDA -	h=1	0.973	0.835	-0.973	0.165	0.945	0.358
		h=3	1.831	0.966	-1.831	0.034	1.544	0.144
	VECIVIV	h=6	1.440	0.925	-1.440	0.075	0.829	0.423
univ/multiv	ARIMA / VECMv	h=3	1.831	0.966	-1.831	0.034	1.544	0.144

^{*} Ver notas en Cuadro 26.

Cuadro 28. Estadístico Diebold-Mariano de contraste de igualdad en la precisión de la predicción. Sector porcino.

			Ha: 1 mejo	r que 2	Ha: 2 mejo	or que 1		
Pop_nac		Horizonte	DM	valor p	DM	valor p	DM*	valor p
	VECM /	h=1	-0.348	0.364	0.348	0.636	0.338	0.739
	VECM / VARn	h=3	1.327	0.908	-1.327	0.092	1.119	0.281
horizontal	VAIXII	h=6	2.350	0.991	-2.350	0.009	1.353	0.201
Horizontal	VECM /	h=1	-0.993	0.160	0.993	0.840	0.965	0.348
	VECM / VARd	h=3	1.165	0.878	-1.165	0.122	0.982	0.342
	VAIKU	h=6	1.409	0.921	-1.409	0.079	0.811	0.433
	MAD 1/	h=1	-1.658	0.049	1.658	0.951	1.611	0.126
vertical	VAR d / VAR n	h=3	-1.472	0.070	1.472	0.930	1.241	0.234
	V / LIX II	h=6	-1.743	0.041	1.743	0.959	1.003	0.336
	VECMI	h=1	-0.223	0.412	0.223	0.588	0.217	0.831
horiz/vert	VECMh /VARd v	h=3	1.084	0.861	-1.084	0.139	0.914	0.375
	/ V AIXu V	h=6	1.810	0.965	-1.810	0.035	1.042	0.318
	ADDIA	h=1	0.200	0.579	-0.200	0.421	0.195	0.848
	ARIMA / VECM h	h=3	-1.399	0.081	1.399	0.919	1.180	0.257
univ/multiv	V LCIVI II	h=6	-2.118	0.017	2.118	0.983	1.219	0.246
uiiiv/iiiuitiv	ADDIA	h=1	-0.060	0.476	0.060	0.524	0.058	0.954
	ARIMA / VARd v	h=3	-0.946	0.172	0.946	0.828	0.798	0.438
	· VAKUV	h=6	-0.142	0.444	0.142	0.556	0.082	0.936

^{*} Ver notas en Cuadro 26.

Cuadro 29 Estadístico Diebold-Mariano de contraste de igualdad en la precisión de la predicción. Sector pollo.

			Ha: 1 me	jor que 2	Ha: 2 mejor que 1			
popl_nac			DM	valor p	DM	valor p	DM*	valor p
	MAD 1/MAD	h=1	0.445	0.672	-0.445	0.328	0.433	0.671
horizontal	VAR d / VAR n	h=3	0.628	0.735	-0.628	0.265	0.529	0.604
		h=6	1.055	0.854	-1.055	0.146	0.608	0.555
	XIAD 1/XIAD	h=1	0.187	0.574	-0.187	0.426	0.181	0.858
vertical	VAR d / VAR	h=3	-0.257	0.399	0.257	0.601	0.217	0.831
		h=6	0.113	0.545	-0.113	0.455	0.065	0.949
	X/AD 11 /	h=1	-0.379	0.352	0.379	0.648	0.369	0.717
horiz/vert	VARd h / VARd v	h=3	-0.952	0.171	0.952	0.829	0.803	0.435
	VARU V	h=6	-3.191	0.001	3.191	0.999	1.837	0.091
	A DIM A /	h=1	0.007	0.503	-0.007	0.497	0.007	0.995
	ARIMA / VARd h	h=3	-0.934	0.175	0.934	0.825	0.787	0.443
univ/multiv	V AIXU II	h=6	-0.085	0.466	0.085	0.534	0.049	0.962
univinuttiv	ADD (A.	h=1	-0.354	0.362	0.354	0.638	0.344	0.735
	ARIMA / VARd v	h=3	-1.219	0.111	1.219	0.889	1.028	0.320
	VAICUV	h=6	-1.536	0.062	1.536	0.938	0.884	0.394

^{*} Ver notas en Cuadro 26.

Cuadro 30. Estadístico Diebold-Mariano de contraste de igualdad en la precisión de la predicción. Sector cebada.

			Ha: 1 mejor que 2		Ha: 2 mejor que 1			
poc_nac			DM	valor p	DM	valor p	DM*	valor p
		h=1	1.074	0.859	-1.074	0.141	1.044	0.311
horizontal	VARd / VARn	h=3	0.466	0.679	-0.466	0.321	0.393	0.700
		h=6	-0.678	0.249	0.678	0.751	0.391	0.703
		h=1	1.221	0.889	-1.221	0.111	1.187	0.252
univ/multi	ARIMA / VARd	h=3	2.248	0.988	-2.248	0.012	1.896	0.077
		h=6	3.496	1.000	-3.496	0.000	2.012	0.067

^{*} Ver notas en Cuadro 26.

Cuadro 31. Estadístico Diebold-Mariano de contraste de igualdad en la precisión de la predicción. Sector maíz.

			Ha: 1 me	jor que 2	Ha: 2 me	jor que 1		
pom_nac			DM	valor p	DM	valor p	DM*	valor p
		h=1	-0.119	0.453	0.119	0.547	0.116	0.909
	VECM / VARd	h=3	0.654	0.744	-0.654	0.256	0.552	0.589
1 1		h=6	0.500	0.691	-0.500	0.309	0.288	0.778
horizontal		h=1	-0.598	0.275	0.598	0.725	0.582	0.569
	VECM / VARn	h=3	-1.829	0.034	1.829	0.966	1.542	0.144
		h=6	-0.824	0.205	0.824	0.795	0.474	0.644
	ARIMA /	h=1	1.136	0.872	-1.136	0.128	1.104	0.285
	VECM	h=3	1.469	0.929	-1.469	0.071	1.238	0.235
univ/multi	V ECIVI	h=6	-2.641	0.004	2.641	0.996	1.520	0.154
	A DIMA	h=1	1.175	0.880	-1.175	0.120	1.142	0.269
	ARIMA / VARd	h=3	1.633	0.949	-1.633	0.051	1.377	0.189
	VARu	h=6	-2.217	0.013	2.217	0.987	16.593	0.000

^{*} Ver notas en Cuadro 26.

A continuación, se han llevado a cabo los contrastes de 'forecast-model encompassing' en la taxonomía de Ericsson (1992) sobre una regresión de los valores reales sobre las predicciones generadas por dos modelos alternativos (regresión inicialmente propuesta por Granger y Ramanathan, 1984). Sobre esta regresión, se contrastan dos hipótesis: el primer modelo 'encompass' el segundo modelo, contrastando conjuntamente que el parámetro estimado para las predicciones del primer modelo es 1 y el parámetro estimado para la predicción del segundo modelo es 0; y, el segundo modelo 'encompass' el primer modelo, contrastando conjuntamente que el primer parámetro es 0 y el segundo es 1. Cuando las series de predicciones corresponden a un mes hacia delante, esta regresión se estima por Mínimos Cuadrados Ordinarios (MCO), mientras que para horizontes de predicción superiores, se utiliza el procedimiento de Newey y West (1987) para corregir la matriz de varianzas y covarianzas de los residuos, tal que sea consistente con posibles problemas de

autocorrelación y heteroscedasticidad de los residuos. De este modo, el contraste conjunto para el horizonte temporal de un mes, se compara con una F, mientras que cuando las series de predicciones corresponden a 3 y 6 meses hacia delante, el estadístico se distribuye como una chi-cuadrado. Por último, dado que las series reales de precios son I(1) y por tanto, se esperaría que las predicciones también lo sean, las series se transforman en diferencias, para evitar el problema de la regresión espuria. Esta transformación no afecta a los tests de encompassing (Clements y Hendry, 2000, p.235).

Los contrastes se reducen a tres parejas de modelos por serie, en representación de la modelización multivariante horizontal, multivariante vertical y univariante (en el caso de cebada y maíz, donde tan sólo existe una modelización horizontal, sólo se contrasta sobre una pareja de modelos). Los tests se han llevado a cabo en RATS y los resultados se muestran en el Cuadro 32. Destaca notablemente como la hipótesis nula de encompassing es extensamente rechazada. Tan sólo en 7 de las 20 parejas de modelos contrastadas, se obtiene rechazo de la hipótesis nula al menos para uno de los horizontes temporales. La segunda cuestión que resalta, es que no necesariamente si un modelo 'encompass' a otro en un horizonte temporal, esta cualidad se extiende a otros horizontes de predicción. Por tanto, en general, lo que estos resultados nos indican es que, los modelos multivariantes aportan información no contenida en los univariantes, y por tanto, información útil para realizar predicciones de los precios agrarios, mientras que precios al consumo y precios internacionales, también aportan información diferenciada. De este modo, un modelo univariante y multivariante no son capaces de explicar sus resultados recíprocos, ni de caracterizar en exclusiva las propiedades de las series. Y lo mismo ocurre entre los modelos multivariantes que incorporan las series de precios de mercados internacionales o precios al consumo. De ahí se deduce, que pueden existir ganancias notables en el uso de combinación de predicciones.

Las únicas excepciones corresponden a los siguientes casos: i) en la predicción del precio de ovino nacional, el modelo VECM, horizontal y vertical, 'encompass' al modelo ARIMA (recogen la información proporcionada por el ARIMA, por lo que son superiores a éste y no tiene sentido combinar las predicciones), pero tan sólo en la predicción tres meses hacia delante; ii) en la predicción del precio de ovino en la lonja del Ebro, el VECM horizontal 'encompass' al VECM vertical y al modelo ARIMA, en las predicciones tres y seis meses hacia delante, por tanto el VECM horizontal puede explicar satisfactoriamente los resultados proporcionados por estos dos últimos modelos. Además, entre ellos, el VECM vertical se muestra superior al ARIMA, en el medio y largo plazo; iii) en la predicción del

precio porcino nacional, el VECM horizontal 'encompass' al modelo VAR en diferencias vertical, y al modelo ARIMA, pero tan sólo en las predicciones un mes hacia delante, mientras que el VAR en diferencias vertical 'encompass' al modelo ARIMA un período hacia delante; iv) en la predicción del precio de maíz un mes hacia delante, el VECM horizontal 'encompass' al modelo ARIMA.

Cuadro 32. Contraste de "Encompassing".

		h=	h=3		3	h=0	5
pov_nac		$\alpha_1=1$ y	$\alpha_1 = 0$ y	$\alpha_1 = 1 \text{ y}$	$\alpha_1 = 0$ y	$\alpha_1=1$ y	$\alpha_1=0$ y
		$\alpha_2 = 0$	$\alpha_2=1$	$\alpha_2=0$	$\alpha_2=1$	$\alpha_2 = 0$	$\alpha_2=1$
VECMh	VARdv	8.358	13.675	10.193	70.000	120.089	76.491
	(valor p)	0.004	0.001	0.006	0.000	0.000	0.000
ARIMA	VECMh	6.076	9.040	25.924	9.605	43.600	94.206
	(valor p)	0.013	0.003	0.000	0.008	0.000	0.000
ARIMA	VARdv	7.348	16.695	12.161	31.307	32.980	128.797
	(valor p)	0.007	0.000	0.002	0.000	0.000	0.000
poa_lbin							
VARdh	VARdv	9.885	5.742	45.648	15.655	65.277	70.827
	(valor p)	0.002	0.015	0.000	0.000	0.000	0.000
ARIMA	VARdh	4.412	7.711	30.091	81.143	19.612	40.776
	(valor p)	0.033	0.006	0.000	0.000	0.000	0.000
ARIMA	VARdv	4.883	4.560	12.359	16.411	21.580	48.840
	(valor p)	0.025	0.030	0.002	0.000	0.000	0.000
poo_nac	VECM	F 405	6.041	(77)	17 507	27.004	210.070
VECMh	VECMv	5.495	6.941	6.776	17.596	37.884	210.979
ADDIA	(valor p)	0.017	0.008	0.034	0.000	0.000	0.000
ARIMA	VECMh	4.515	5.272	14.582	1.190	17.437	11.892
1000	(valor p)	0.031	0.020	0.001	0.551	0.000	0.003
ARIMA	VECMv	4.092	6.189	7.136	2.089	14.899	47.586
	(valor p)	0.040	0.012	0.028	0.352	0.001	0.000
poo_eb2							
VECMh	VECMv	5.327	6.130	1.733	6.192	4.135	18.272
	(valor p)	0.019	0.012	0.420	0.045	0.126	0.000
ARIMA	VECMh	4.999	3.951	21.887	1.948	37.852	2.667
	(valor p)	0.023	0.044	0.000	0.378	0.000	0.264
ARIMA	VECMv	4.892	4.560	15.667	2.451	15.249	1.645
	(valor p)	0.024	0.030	0.000	0.294	0.000	0.439
pop_nac							
VECMh	- VARdv	1.209	6.370	15.012	26.330	323.821	113.970
	(valor p)	0.328	0.011	0.001	0.000	0.000	0.000
ARIMA	VECMh	5.200	1.506	52.643	28.678	69.130	177.093
	(valor p)	0.020	0.256	0.000	0.000	0.000	0.000
ARIMA	VARdv	6.214	3.464	28.328	26.543	60.702	69.801
	(valor p)	0.012	0.060	0.000	0.000	0.000	0.000
	(varor p)	0.012	0.000	0.000	0.000	0.000	0.000
_ popl_nac							
VARdh	VARdv	22.980	22.708	279.231	207.193	22.195	33.987
	(valor p)	0.000	0.000	0.000	0.000	0.000	0.000
ARIMA	VARdh	25.160	21.695	157.110	265.797	61.788	21.148
	(valor p)	0.000	0.000	0.000	0.000	0.000	0.000
ARIMA	VARdv	24.863	21.172	154.983	176.199	66.608	33.989
	(valor p)	0.000	0.000	0.000	0.000	0.000	0.000
poc_nac							
ARIMA	VARdh	428.041	167.945	4459.820	2822.399	11583.203	2616.195
	(valor p)	0.000	0.000	0.000	0.000	0.000	0.000
		2.000	2.300	2.000	2.000	2.300	2.000
pom_nac	V V = 6 \ -						المنتسو
ARIMA	VECMh	5.349	2.450	298.654	64.318	2202.466	501.028
	(valor p)	0.019	0.122	0.000	0.000	0.000	0.000

Dados los resultados anteriores en los que prevalece la ausencia de 'encompassing', se ha procedido a la estimación de las ponderaciones en la combinación de predicciones. Para ello, se impone que la constante sea nula y que las ponderaciones sumen 1. Estas restricciones quedan automáticamente impuestas al estimar una regresión de los errores de predicción del modelo 2 sobre la diferencia en las predicciones entre el modelo 1 y el modelo 2. Las ponderaciones se muestran en el Cuadro 33. Se muestran entre paréntesis las correspondientes a parejas de modelos que no es necesario combinar dado que un modelo incorpora la información proporcionada por un segundo modelo.

Cuadro 33. Combinación de predicciones. Ponderaciones estimadas

		_				
	pov_nac					
h	VECMh	VARdv	ARIMA	VECMh	ARIMA	VARdv
1	0.745	0.255	0.731	0.269	2.032	-1.032
3	0.722	0.278	0.407	0.593	0.975	0.025
6	0.749	0.251	0.346	0.654	0.791	0.209
	pov_lbin					
h	VARh	VARdv	ARIMA	VARh	ARIMA	VARv
1	-1.437	2.437	1.609	-0.609	0.414	0.586
3	-1.111	2.111	1.611	-0.611	0.509	0.491
6	-0.349	1.349	0.993	0.007	0.524	0.476
	poo_nac					
h	VECMh	VECMv	ARIMA	VECMh	ARIMA	VECMv
1	2.297	-1.297	0.612	0.388	0.817	0.183
3	1.965	-0.965	(-0.215)	(1.215)	(0.182)	(0.818)
6	1.486	-0.486	0.551	0.449	0.755	0.245
	poo_eb					
h	VECMh	VECMv	ARIMA	VECMh	ARIMA	VECMv
1	8.227	-7.227	0.285	0.715	0.433	0.567
_ 3	(2.229)	(-1.229)	(-0.430)	(1.430)	-0.285	1.285
6	(1.129)	(-0.129)	(0.109)	(0.891)	0.141	0.859
	pop_nac					
h h	VECMh	 VARdv	ARIMA	VECMh	ARIMA	VARdv
1	(0.821)	(0.179)	(0.276)	(0.724)	(0.760)	(0.240)
3	0.520	0.480	0.632	0.368	0.866	0.134
6	0.357	0.643	0.647	0.353	0.549	0.451
_ =	popl_na					
	C C					
$^-$ h	VARdh	VARdv	ARIMA	- VARdh	ARIMA	VARdv
1	0.500	0.500	0.182	0.818	0.179	0.821
3	0.223	0.777	1.793	-0.793	1.594	-0.594
6	1.125	-0.125	0.219	0.781	0.926	0.074
			1	pom_na		
	poc_nac			C C		
	ARIMA	VARdh		ARIMA	VECMh	
1	0.399	0.601	1.000	(0.184)	(0.816)	
3	0.225	0.775	3.000	0.013	0.987	
6	-0.602	1.602	6.000	-0.021	1.021	

Finalmente, para cada uno de los modelos estimados se ha aplicado el contraste propuesto por Pesaran y Timermann (1992) para evaluar la bondad en la predicción de los cambios en la variable real. Para ello, es preciso previamente, transformar la serie de precios real y la serie de predicciones. Cuando se predice un período adelante, se calcula la diferencia entre las series (real y predicción) en t respecto a t-1. Cuando se predice 3 ó 6 períodos hacia delante se calcula la diferencia entre t y t-h. Es decir, se toma como punto de partida el período para el cual se dispone de la información (t-h, h=1,3,6), y se calcula el cambio de la variable respecto a este período. Así, por ejemplo, nos interesa saber, en qué medida, aumentos (disminuciones) de la serie real entre t-h y t, son predichos correctamente. El test se ha calculado en GAUSS, y los resultados se muestran en los Cuadros 34 a 37.

En primer lugar, se puede destacar la elevada proporción de veces que las predicciones se mueven en la misma dirección que los valores reales. Así, para la mayoría de las series, el porcentaje de veces que se predice el signo correctamente oscila entre el 70 y 100%. Las excepciones más notables las constituyen las predicciones del precio de cebada y pollo. En el primero, nunca se supera el 59%, mientras que pollo, en la mayoría de modelos y horizontes temporales, la proporción de aciertos oscila en torno al 40%. Los resultados muestran que no necesariamente los modelos ajustan mejor las tendencias a corto que a medio y largo plazo, si atendemos solamente al porcentaje de aciertos. Sin embargo, atendiendo al resultado del test del contraste, se confirma que, en general, la hipótesis nula de independencia entre cambios en el valor real y en la predicción se rechaza con más frecuencia al trabajar con predicciones a un mes. Es decir, en general, los modelos predicen mejor el signo de los cambios entre un mes y el siguiente. Una excepción notable a este resultado global es el sector ovino, donde cualquiera de los modelos predice significativamente mejor los cambios a medio (3 meses) y largo plazo (6 meses) que a un mes. Una posible explicación de este modelo es la incidencia de la estacionalidad. Como se puede apreciar en el Gráfico 2, las series de ovino tienen un fuerte componente estacional, que además, se repite regularmente año tras año. La modelización mediante ficticias estacionales parece haber captado bien estas fluctuaciones regulares, asegurando unas predicciones precisas en cuanto a su dirección, cuando se predice con la suficiente distancia temporal.

Las predicciones que mejor se ajustan a la evolución de los precios reales son las correspondientes al sector porcino y ovino, que son los sectores donde se rechaza la hipótesis nula de ausencia de relación, en un mayor número de veces. Por el contrario, ninguno de los modelos estimados predice correctamente la dirección de los cambios en el precio de pollo y

cebada, y para ninguno de los horizontes temporales. Estos resultados vienen a reforzar la pobre capacidad predictiva de los modelos estimados para estos sectores, lo que obliga en el futuro, a redefinir estos modelos, probablemente incluyendo ajustes no lineales.

Otro resultado interesante que se deriva de la aplicación de este test, es que no es fácil discernir entre transformaciones o modelizaciones, ya que, cuando un modelo predice correctamente los puntos de giro, este resultado se repite en otros modelos. Comparando entre modelizaciones, tampoco parece existir una supremacía de los modelos horizontales de precios frente a los verticales, salvo en el caso del vacuno, donde los modelos horizontales ajustan mejor las tendencias evolutivas de los precios en origen, nacional y regional, que los modelos verticales. Comparando entre trasformaciones, no es fácil discernir cual predice mejor los cambios, si son los modelos en niveles, diferencias o con la restricción de cointegración. Y finalmente, comparando entre modelos univariantes y multivariantes, todos ellos ofrecen resultados satisfactorios. No es posible, sin embargo, establecer un resultado único en lo referente a qué enfoque predice mejor para qué horizonte temporal, ya que la evidencia es mixta, para distintas series de precios.

Cuadro 34. Contraste Pesaran & Timermann (1992) de predicción de signo. Sector vacuno.

		Pov_nac				Poa_lbin		
			ARIMA				ARIMA	
		h=1	h=3		h=6	h=1	h=3	h=6
	% predicciones							
	con signo correcto	71	62		71	76	69	71
	PT	1.418	-0.877			2.164	1.197	1.190
	valor p	0.078	0.190			0.015	0.116	0.117
			VAR d				VAR d	
		h=1	h=3	h=6		h=1	h=3	h=6
	% predicciones con signo correcto	76	62		71	76	69	71
	PT	2.164	-0.877			2.164	1.313	1.190
	valor p	0.015	0.190 VECM			0.015	0.095 VECM	0.117
al		h=1	h=3	h=6		h=1	h=3	h=6
Horizontal	% predicciones con signo correcto	76	54		57			
Ho	PT	2.164	-1.066					
	valor p	0.015	0.143					
			VARn				VARn	
		h=1	h=3	h=6		h=1	h=3	h=6
	% predicciones con signo correcto	71	85		57	76	92	71
	PT	1.810	2.400			2.164	3.204	1.190
	valor p	0.035	0.008			0.015	0.001	0.117
Vertical			VARd				VARd	
		h=1	h=3	h=6		h=1	h=3	h=6
	% predicciones con signo correcto	76	46		57	71	69	71
	PT	1.841	-1.265			2.642	1.191	1.190
	valor p	0.033	0.103 VARn			0.004	0.117 VARn	0.117
		h=1	h=3	h=6		h=1	h=3	h=6
	% predicciones con signo correcto	53	62		43	59	77	86
	PT	0.388	1.481			0.718	2.014	2.143
	valor p	0.349	0.069			0.236	0.022	0.016

Cuadro 35. Contraste Pesaran & Timermann (1992) de predicción de signo. Sector ovino.

			Poo_nac			Poo_eb		
		ARIMA			ARIMA			
		h=1	h=3	h=6	h=1	h=3	h=6	
	% predicciones con signo correcto	53	85	86	53	69	100	
	PT valor p	0.121 0.452	2.591 0.005	1.844 0.033	1.429 0.077	1.429 0.077	2.857 0.002	
Vertical	vaioi p	0.432	VAR d	0.033	0.077	VAR d	0.002	
		h=1	h=3	h=6	h=1	h=3	h=6	
	% predicciones con signo correcto	59	77	86	53	92	100	
	PT	0.422	2.014	1.844	-0.066	3.202	2.857	
	valor p	0.337	0.022 VECM	0.033	0.526	0.001 VECM	0.002	
		h=1	h=3	h=6	h=1	h=3	h=6	
	% predicciones con signo correcto	53	77	86	47	92	86	
	PT	-0.065	2.014	1.844	-0.500	3.204	3.402	
	valor p	0.526	0.022	0.033	0.691	0.001	0.000	
			VARn			VARn		
		h=1	h=3	h=6	h=1	h=3	h=6	
	% predicciones con signo correcto	53	77	86	59	92	86	
	PT	-0.065	2.014	1.844	0.422	3.204	1.844	
	valor p	0.526	0.022 VARd	0.033	0.337	0.001 VARd	0.033	
		h=1	h=3	h=6	h=1	h=3	h=6	
	% predicciones con signo correcto	47	77	71	59	85	100	
	PT	-0.500	2.014	1.347	0.422	2.591	2.857	
	valor p	0.691	0.022 VECM	0.089	0.337	0.005 VECM	0.002	
		h=1	h=3	h=6	h=1	h=3	h=6	
	% predicciones con signo correcto	47	77	100	47	77	86	
	PT	-0.500	2.055	2.857	-0.500	2.055	1.844	
	valor p	0.691	0.020 VARn	0.002	0.691	0.020 VARn	0.033	
		h=1	h=3	h=6	h=1	h=3	h=6	
	% predicciones con signo correcto	65	77	86	65	92	100	
	PT	1.049	2.014	1.844	1.049	3.204	2.857	
	valor p	0.147	0.022	0.033	0.147	0.001	0.002	

Cuadro 36. Contraste Pesaran & Timermann (1992) de predicción de signo. Sector porcino y pollo.

	_	Pop_nac			Popl_nac		
			ARIMA			ARIMA	
		h=1	h=3	h=6	h=1	h=3	h=6
	% predicciones con signo correcto	71	77	100	47	46	14
	PT	1.736	2.055	2.857	-0.236	-0.268	
	valor p	0.041	0.020 VAR d	0.002	0.407	0.394 VAR d	
		h=1	h=3	h=6	h=1	h=3	h=6
	% predicciones con signo correcto	59	77	100	53	38	14
	PT	0.718	2.014	2.857	0.236	-0.893	
	valor p	0.236	0.022 VECM	0.002	0.407	0.186 VECM	
tal		h=1	h=3	h=6	h=1	h=3	h=6
Horizontal	% predicciones con signo correcto	65	69	100			
Ĕ	PT	1.317	1.556	2.857			
	valor p	0.094	0.060	0.002			
			VARn	1 6		VARn	1.6
		h=1	h=3	h=6	h=1	h=3	h=6
	% predicciones con signo correcto	82	69	100	65	38	43
	PT	2.975	1.556	2.857	1.233	-0.893	
	valor p	0.001	0.060 VARd	0.002	0.109	0.186 VARd	
		h=1	h=3	h=6	h=1	h=3	h=6
	% predicciones con signo correcto	76	77	100	65	46	0
	PT	2.185	2.055	2.857	1.239	-0.268	
ical	valor p	0.014	0.020	0.002	0.108	0.394	
Vertical			VARn			VARn	
		h=1	h=3	h=6	h=1	h=3	h=6
	% predicciones con signo correcto	71	77	100	53	38	0
	PT	1.736	2.055	2.857	0.236	-0.893	
	valor p	0.041	0.020	0.002	0.407	0.186	

Cuadro 37. Contraste Pesaran & Timermann (1992) de predicción de signo. Sector cebada y maíz.

		Poc_nac			Pom_nac		
			ARIMA			ARIMA	
		h=1	h=3	h=6	h=1	h=3	h=6
	% predicciones con signo correcto	59	46	14	59	69	14
	PT	0.718	1.066		0.767	1.556	
	valor p	0.236	0.143 VAR d		0.222	0.060 VAR d	
		h=1	h=3	h=6	h=1	h=3	h=6
	% predicciones con signo correcto	59	46	14	71	69	29
	PT	0.718	1.066		1.736	1.556	
	valor p	0.236	0.143		0.041	0.060	
			VECM			VECM	
ital		h=1	h=3	h=6	h=1	h=3	h=6
Horizontal	% predicciones con signo correcto				88	62	29
Ĭ	PT				3.329	1.125	
	valor p				0.000	0.130	
			VARn			VARn	
		h=1	h=3	h=6	h=1	h=3	h=6
	% predicciones con signo correcto	59	46	14	76	54	0
	PT	0.718	1.066		2.281	0.692	
	valor p	0.236	0.143		0.011	0.244	

4. Conclusiones

En este documento se han explorado distintos modelos paramétricos para ser utilizados en la predicción de precios agrarios en los mercados de origen. Las series de precios objeto de predicción son los precios nacionales en origen a nivel nacional de vacuno, ovino, porcino, pollo, cebada y maíz. En los sectores vacuno y ovino, además, se predicen los precios aragoneses en origen, correspondientes al precio de añojo en la lonja de Binéfar y el precio de cordero Pascual en la lonja del Ebro. El período de estimación muestral abarca desde enero de 1997 hasta junio de 2004, reservándose las observaciones entre julio de 2004 y diciembre de 2005, para evaluar las predicciones arrojadas por modelos alternativos.

Predicciones a uno, tres y seis meses adelante, se han generado mediante modelos univariantes (ARIMA) y multivariantes (VAR y VECM). Entre los modelos multivariantes, se han comparado las predicciones arrojadas por modelos que incorporan la información proporcionada por otros mercados geográficos (modelos horizontales de transmisión de precios) con los que incorporan la información incorporada en el precio al consumo (modelos verticales). Los mercados internacionales utilizados en la modelización horizontal se han seleccionado en virtud de la intensidad de las relaciones comerciales con España. Así, en todos los modelos horizontales de precios, se ha incorporado el precio en origen de Francia. En el sector vacuno, además, se ha añadido el precio de Alemania; en el sector porcino, el precio de Holanda; y en el sector cebada, el precio del Reino Unido.

El análisis se inicia mediante el contraste de raíces unitarias para discernir si las series objeto de modelización contienen una raíz unitaria o no, es decir, si la serie necesita ser diferenciada para alcanzar la estacionariedad o no. Con este fin se han utilizado tres tests, diferentes en su concepción: el estadístico KPSS que contrasta la hipótesis nula de estacionariedad; el estadístico PP modificado por Ng y Perron (2001) que contrasta la hipótesis nula de raíz unitaria, mejorando las propiedades en cuanto a tamaño y potencia de su predecesor PP; y el test de Perron (1997) que contrasta la hipótesis nula de raíz unitaria en presencia de un cambio estructural, cuya fecha se estima endogeneamente. Este último test se ha aplicado a las series de vacuno, para las cuales se prevé que hayan sufrido rupturas en su evolución como consecuencia de la EEB (enfermedad de las vacas locas). Cuando existen rupturas estructurales, el test de Perron (1997) presenta mejores propiedades que los

anteriores, en concreto, mayor potencia. Tras la aplicación de estos tests se obtiene suficiente evidencia a favor de que las series de precios son I(1), siendo más dudosa la integrabilidad de los precios de cebada en España y Francia. Las fechas de ruptura seleccionadas mediante el tercer estadístico se pueden además adscribir, bien a la aparición de la EEB (finales de 2000), bien al inicio de la fase de recuperación de la crisis (mediados de junio de 2001).

Estos resultados implican la necesidad de contrastar en los modelos multivariantes la existencia de cointegración, y de ser aceptada esta hipótesis, un modelo correctamente especificado sería un Modelo de Corrección del Error (VECM) que impone tal restricción, mientras que el rechazo de cointegración, conduciría a la estimación de un VAR con las variables en diferencias. Este sería el procedimiento correcto de cara a explicar en profundidad las relaciones a largo-plazo y dinámicas entre los precios, sin embargo, cuando el objetivo es predecir, no parece existir consenso en la literatura sobre la mejora aportada por la restricción de cointegración a la calidad de las predicciones. De hecho, experimentos de Monte Carlo con muestras pequeñas, demuestran que esta ganancia es poca o inexistente, y se concluye que modelos en diferencias y en niveles, pueden aportar predicciones igualmente aceptables o incluso mejores. Siguiendo este razonamiento, en este documento se ha trabajado con modelos VAR en niveles, en diferencias y VECM, imponiendo la restricción sobre los parámetros de largo plazo derivados de la existencia de cointegración, cuando ésta existe. En la definición de los modelos, tanto univariantes como multivariantes, se ha prestado especial atención a la buena especificación de los residuos y la modelización de los valores atípicos.

Los contrastes de cointegración se han llevado a cabo mediante el procedimiento de Johansen ya que se integra perfectamente en la metodología VAR. Los precios nacionales de vacuno, ovino, porcino y maíz, así como el precio del ovino aragonés, evolucionan a largo plazo en consonancia con los precios de los mercados internacionales seleccionados para cada sector, no detectándose sin embargo relaciones claras de liderazgo. Por el contrario, los precios de pollo, cebada y vacuno aragonés, no mantienen una relación de equilibrio a largo plazo con los precios internacionales. Un resultado que se repite para distintos sectores es la desconexión existente entre el precio en origen y el precio al consumo, al menos en el largo plazo, ya que tan sólo en un sector, el ovino, se encuentra cointegración entre ambos precios. Además, para ambas series de ovino, el precio al consumo guía la evolución a largo plazo: ante desequilibrios en el largo plazo, el precio al consumo no reacciona para corregirlos, por lo que se puede interpretar como causante de los precios en origen, mientras que no es causado por ellos. La ausencia de relaciones de equilibrio a largo plazo apoya la tesis de que

los precios al consumo cada vez más vienen definidos por condicionantes ajenos al sector agrario, y en mayor medida responden a factores ligados a la oferta de servicios añadidos al producto agrario. Por su parte, la exogeneidad del precio al consumo respecto del largo plazo concuerda con un predominio de transmisión de shocks desde el mercado detallista hacia el mercado en origen, respaldando la teoría del tirón de la demanda.

Tras el análisis de cointegración, una correcta especificación de los modelos atendiendo a sus propiedades estocásticas implica la estimación de 8 Modelos de Corrección del Error (VECM): 2 horizontales en vacuno, 2 horizontales y 2 verticales en ovino, 1 horizontal en porcino, 1 horizontal en maíz; y 6 modelos VAR en diferencias (VARd): 2 verticales en vacuno, 1 vertical en porcino, 2 en pollo, uno horizontal y uno vertical, y 1 horizontal en cebada. A estos modelos correctamente especificados, hay que añadir 14 modelos VAR en niveles (VARn), y 6 modelos VAR en diferencias (VARd) que se estiman para comprobar el impacto de la transformación sobre la calidad predictiva; y los 8 modelos ARIMA. Con todos ellos, se han generado las predicciones para los distintos horizontes temporales. En concreto, se han generado 18 predicciones un mes hacia delante; 16 predicciones tres meses hacia delante; y 13 predicciones seis meses hacia delante.

La calidad en la predicción se ha evaluado según distintos siguientes criterios y contrastes, que se exponen a continuación junto con los principales resultados.

En primer lugar, se ha calculado el Error Cuadrático Medio (y Error Absoluto Porcentual Medio). En general, al comparar entre transformaciones alternativas para la modelización horizontal o vertical multivariante, si existe un Modelo de Corrección del Error, éste suele ser el que arroja el mínimo ECM, mientras que cuando este modelo no está presente por no haberse hallado cointegración, el VAR en diferencias suele ser preferido al VAR en niveles, es decir, las medidas de precisión tienden en general a seleccionar como modelos multivariantes que generan las mejores predicciones modelos que están correctamente especificados en relación con las propiedades estocásticas de las series. Asimismo, al comparar modelos multivariantes con univariantes, en términos generales, los primeros parecen arrojar mejores predicciones que los segundos. Por último, entre la modelización horizontal y vertical, las medidas de precisión indican con mayor frecuencia un mejor comportamiento de los primeros.

En segundo lugar, se ha aplicado el estadístico de Diebold y Mariano (1995) y su versión modificada por Harvey, Leybourne y Newbold (1997), para contrastar si las

diferencias en el ECM correspondientes a dos modelos alternativos son estadísticamente significativas, y si es así, qué modelo arroja el menor ECM. Los resultados indican que existen escasas diferencias significativas en la precisión de las predicciones generadas por modelizaciones y transformaciones alternativas, lo que implica que, en varias de las series, ni los precios internacionales ni los precios al consumo contribuyen a mejorar la precisión en la predicción respecto a un modelo univariante. Ahora bien, cuando sí existen diferencias significativas, se corrobora el ranking de modelos y transformaciones obtenido previamente comparando el ECM. Un elemento sin embargo a tener en cuenta, es que no necesariamente un modelo que arroja un mejor ECM para un horizonte de predicción es significativamente mejor para los otros horizontes de predicción. En otras palabras, resulta imposible seleccionar un único que modelo que, sistemáticamente se muestre superior a otro para cualquier horizonte de predicción.

En tercer lugar, se ha aplicado el contraste de "encompassing". Este contraste viene a complementar la calidad en la predicción medida a través de la precisión. Así, aunque dos modelos alternativos predigan con idéntica precisión, es interesante conocer si uno de ellos aporta información diferenciada y ausente en el otro. Lo ideal sería encontrar un modelo que 'encompase' o incorpore la información proporcionada por los demás modelos alternativos, en el sentido de que sea capaz de explicar sus resultados y, por tanto, caracterizar las propiedades de las series al menos, tan bien como los modelos rivales. Este test se ha aplicado siguiendo el enfoque de regresión propuesto por Granger y Ramanathan (1984), con las subsiguientes consideraciones de Newbold y Harvey (2004), para comparar entre el modelo univariante, un modelo representativo de la modelización horizontal y uno representativo de la modelización vertical. Entre las distintas transformaciones, se ha seleccionado la correspondiente a la especificación correcta (VECM o VARd) que además es la que se ha mostrado superior en los tests previos.

Destaca notablemente como la hipótesis nula de "encompassing" es extensamente rechazada. Además, no necesariamente si un modelo 'encompass' a otro en un horizonte temporal, esta cualidad se extiende a otros horizontes de predicción. Por tanto, en general, los modelos multivariantes aportan información no contenida en los univariantes, y por tanto, información útil para realizar predicciones de los precios agrarios, mientras que precios al consumo y precios internacionales, también aportan información diferenciada entre sí. De ahí se deduce, que pueden existir ganancias notables en el uso de combinación de predicciones.

Siguiendo la propuesta de los mismos autores, se han estimado en el texto las ponderaciones asignadas a cada modelo de predicción.

Finalmente, tan importante como la precisión o la información aportada por modelos alternativos, es la predicción correcta de la tendencia de la serie real. Para comprobar este aspecto, se ha aplicado el test de Pesaran y Timermann (1992). Este estadístico contrasta si las predicciones recogen los puntos de giro o cambio de tendencia. Los resultados son bastante satisfactorios para cualquiera de los modelos, y para los sectores vacuno, ovino, porcino, y cebada, de forma que la proporción de veces que las predicciones se mueven en la misma dirección que los valores reales es elevada. En general, los modelos predicen mejor el signo de los cambios entre un mes y el siguiente. Las predicciones que mejor se ajustan a la evolución de los precios reales son las correspondientes al sector porcino y ovino, mientras que las predicciones del precio de pollo y cebada son extremadamente pobres. No resulta fácil, sin embargo, establecer si una transformación o modelización (horizontal o vertical) predice los cambios de tendencia significativamente mejor que otra. Salvo en el sector vacuno, donde claramente la modelización horizontal ajusta mejor el cambio de signo que la modelización vertical, no se puede establecer una supremacía en este aspecto de la modelización horizontal sobre la vertical.

Los resultados obtenidos en este documento deben circunscribirse al período muestral analizado y las series de precios seleccionadas. En el futuro, la modelización del sector pollo y cebada debería replantearse, debido a los pobres resultados predictivos obtenidos para estos sectores. No obstante, errores de predicción elevados pueden responder, no a una incorrecta especificación de los modelos, sino a la existencia de rupturas estructurales durante el período de evaluación de las predicciones. Por este motivo, los modelos estimados en este documento, constituyen una base sobre la que seguir trabajando, aplicando las revisiones precisas conforme nueva información esté disponible.

Referencias

- Akaike H.(1974). A new look at the statistical model identification, *IEEE Transactions on Automatic Control* AC-19, 716-723.
- Aznar A. y Trívez F.J.(1993). Métodos de Predicción en Economía. Ed. Ariel, Barcelona.
- Banerjee A. (1995). Dynamic specification and testing for unit roots and cointegration. En Hoover K.D.(ed.): *Macroeconometrics: Developments, Tensions and Prospects*. Kluwer.
- Bates J.M. y Granger C.W.J. (1969). The combination of forecasts. *Operations Research Quarterly* 20, 41-468.
- Bera A.K. y Jarque C.M. (1982). Model specification tests: A simultaneous approach. *Journal of Econometrics* 20, 59-82.
- Box G.E.P. y Jenkins G.M. (1970). *Time series analysis, forecasting and control*. Holdn Day, San Francisco.
- Brandner P. y Kunst R.S. (1990). Forecasting vector autorregressions The influence of cointegration. A Monte Carlo study. Research memorandum 265, Institute for Advanced Studies, Vienna.
- Choi I. y Chung B.S. (1995). Sampling frequency and the power of tests for a unit root: A simulation study. *Economic Letters* 49, 131-136.
- Chong Y.Y y Hendry D.F.(1986). Econometric evaluation of linear macro-economic models. *Review of Economic Studies* 53, 671-690. Reprinted in Granger C.W.J. (ed).(1990). *Modelling Economic Series*. Oxford: Clarendon Press.
- Clements M.P. y Hendry D.F. (2000). *Forecasting Economic Time Series*. Cambridge University Press.
- Clements M.P. y Hendry D.F. (2004). A companion to economic forecasting. Blackwell.
- Comisión Europea (varios números). Mercados Agrarios. Bruselas.
- Dickey D.A. y Fuller W.A.(1979). Distribution of the estimators for autoregressive time series with a unit root. *Journal of the American Statistical Association* 74, 427-431.
- Dickey D.A. y Fuller W.A.(1981). Likelihood ratio statistics for autoregressive time series with a unit root. *Econometrica* 49, 1057-1072.
- Diebold F.X. y López J.A. (1996). Forecast evaluation and combination. En: Maddala G.S. y RAo C.R.(eds): *Handbook of Statistics* 14. Amsterdam. pp.241-268.
- Diebold F.X. y Mariano R.S. (1995). Comparing predictive accuracy. *Journal of Business and Economic Statistics* 13, 253-263.
- Dolado, J.J., Jenkinson, T. y Sosvilla-Rivero, S. (1990). Cointegration and Unit Roots. *Journal of Economic Surveys* 4, 249-273.
- Engle R.F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. *Econometrica* 50, 987-1007.
- Engle R.F. y Granger C.W.J.(1987). Cointegration and error correction: Representation, estimation and testing. *Econometrica* 55, 251-276.

- Ericsson N.R. (1992). Parameter constancy, mean square forecast errors, and measuring forecast performance: An exposition, extensions and illustration. *Journal of Policy Modeling* 14, 465-495.
- Ericsson N.R. y Márquez J.R. (1993). Encompassing teh forecasts of US trade balance models. *Review of Economics and Statistics* 75, 19-31.
- Fildes R. y Ord K. (2004). Forecasting competitions: Their role in improving forecasting practice and research. En: Clements M.P. y Hendry D.F. (eds): *A Companion to Economic Forecasting*. Blackwell Publishing.
- Franses P.H. (2000). Time series models for business and economic forecasting. Cambridge University Press
- Franses P.H. y van Dijk D.(2000). *Non-linear time series models in empirical finance*. Cambridge University Press.
- Gómez, V. y Maravall, A. (1996). Programs TRAMO (Time Series Regression with Arima noise, Missing observations, and Outliers) and SEATS (Signal Extraction in Arima Time Series). Instruction for the User. Working Paper 9628 (with updates), Research Department, Bank of Spain.
- Granger C.W.J. y Newbold P. (1973). Some comments on the evaluation of economic forecasts. *Applied Economics* 5, 35-47.
- Granger C.W.J. y Newbold P. (1974). Spurious regressions in econometrics. *Journal of Econometrics* 26, 111-120.
- Granger C.W.J. y Newbold P. (1986). *Forecasting economic time series*. New York, Academic Press.
- Granger C.W.J. y Ramanathan R. (1984). Improved methods of combining forecasts. *Journal of Forecasting* 3, 197-204.
- Harris R. y Sollis R. (2003). *Applied time series modelling and forecasting*. Johan Wiley & Sons. Chichester, England.
- Harvey, A.C., (1981). Time Series Models. John Wiley. New York.
- Harvey D., Leybourne S. y Newbold P. (1997). Testing the equality of prediction mean squared errors. *International Journal of Forecasting* 13, 281-291.
- Harvey D., Leyborune S.J. y Newbold P. (1998). Tests for forecast encompassing. *Journal of Business and Economic Stastistics* 16, 254-259.
- Johansen, S. (1988). Statistical Analysis of Cointegration Vectors. *Journal of Economic Dynamics and Control* 12, 231-254.
- Johansen, S. y Juselius, K. (1990). Maximum Likelihood Estimation and Inference on Cointegration-with Applications to the Demand for Money. *Oxford Bulletin of Economics and Statistics* 52, 169-210.
- Kwiatkowski D., Philips P.C.B. Schmidt P. y Shin Y. (1992). Testing the null of stationarity against the alternative of a unit root. *Journal of Econometrics* 54, 159-178.
- Karahan O. (2003). Relaciones dinámicas y predicción de los precios del maíz regionales en España. Mimeo, Tesis Master, CIHEAM-IAMZ.
- Ljung, G.M., Box G.E.P., (1978). On a Measure of Lack of Fit in Time Series Models.

- Biometrica, 65: 297-303.
- Ministerio de Agricultura, Pesca y Alimentación (varios números). *Boletín de Coyuntura Agraria*. Secretaría General Técnica. Madrid.
- Ministerio de Industria, Turismo y Comercio (varios años). *Boletín Económico del ICE*. Subdirección General de Precios y Relaciones Institucionales. Madrid.
- Mariano R.S.(2004). "Testing forecast accuracy". En: Clements y Hendry Eds.: A companion to economic forecasting. Blackwell.
- McCracken M.W. y West K.D.(2004). "Inference about predictive ability" en Clements y Hendry Eds.: A Companion to Economic Forecasting. Blackwell.
- MacKinnon J.(1991). "Critical values for cointegration tests" en Engle R.F. y Granger C.W.J. (eds): *Long-run economic relationships*, pp. 267-276. Oxford University Press, Oxford, UK.
- Meese R.A. y Rogoff K.(1988). Was it real? The exchange rate-interest differential relation over the modern floating-rate period. *Journal of Finance* 43, 933-948.
- Mincer J. y Zarnowitz V. (1969). "The evaluation of economic forecasts". In Mincer J.(ed), *Economic Forecasts and Expectations*. New York: National Bureau of Economic Research.
- Nelson C.R. y Plosser C.I. (1982). Trends and random walks in macroeconomic time series: some evidence and implications. *Journal of Monetary Economics* 10, 139-162.
- Newbold P. y Harvey D.I.(2004). "Forecast Combination and Encompassing" en Clements y Hendry Eds.: A companion to economic forecasting. Blackwell.
- Newey W.K. y West K.D. (1987). A simple positive semi-definite heteroskedasticity and autocorrelation consistent covariance matrix. *Econometrica* 55, 703-708.
- Ng S. y Perron P. (2001). Lag length selection and the construction of unit root test with good size and power. *Econometrica* 69, 1519-1554.
- Osterwald-Lenum M. (1992). A note with quantiles of the asymptotic distribution of the ML cointegration rank test stastistics. *Oxford Bulletin of Economics and Statistics* 50, 361-377.
- Pagan a.R. y Schwert G.W. (1990). Alternative models for conditional stock market volatility. *Journal of Econometrics* 45, 267-290.
- Perron P. (1989). The Great Crash, the Oil Shock and the unit root hypothesis. *Econometrica* 57, 1361-1402.
- Perron P.(1997). Further evidence on breaking trend functions in macroeconomics variables. *Journal of Econometrics* 80, 355-385.
- Perron P. y Ng S. (1996). Useful modifications to some unit root tests with dependent errors and their local aymptotic properties. *Review of Economic Studies* 63, 435-463.
- Pesaran M.H. y Timmermann A. (1992). A simple nonparametric test of predictive performance. *Journal of Business and Economic Stastistics* 10, 561-565.
- Philips P.C.B. y Perron P.(1988). Testing for a unit root in time series regression. *Biometrica* 75, 335-446.
- Pulido A. y López A.M.(1999). Predicción y simulación aplicada a la economía y gestión de empresas. Ediciones Pirámide, Madrid.

- Sanjuán A.I. y Gil J.M.(2001a). Price transmission analysis: a flexible methodological approach applied to European pork and lamb markets. *Applied Economics* 33, 123-131.
- Sanjuán A.I. y Gil J.M.(2001b). A note on tests of market integration in a multivariate non-stationary framework. *Journal of Agricultural Economics* 52, 111-119.
- Schwert G.W. (1989). Tests for unit roots: A Monte Carlo investigation. *Journal of Business and Economic Statistics* 7, 147-159.
- Schwarz G. (1978). Estimating the dimension of a model. *Annals of Statistics* 6, 461-464.
- Sims C.A.(1980). Macroeconomics and Reality. *Econometrica* 48, 1-49.
- Tiao G.C. y Tsay R.S.(1983). Consistency Properties of Least Squares Estimates of Autoregressive Parameters in ARMA models. *The Annals of Statistics* 11, 856-871.
- West K.D.y Cho D. (1995). The predictive ability of several models of exchange rate volatility. *Journal of Econometrics* 69, 367-391.

Anexos

En el Anexo 1 se se presentan las series originales de precios utilizadas en los modelos alternativos de predicción. Todas las series están expresadas en €/kg canal.

En el Anexo 2 se presentan las series originales y las predicciones a uno, tres, seis meses hacia delante y dinámicas, realizadas con cada uno de los modelos estimados. Todas las series están expresadas en €/kg canal.

Los modelos multivariantes se identifican con los siguientes acrónimos:

VARd h: VAR en diferencias, modelización horizontal (se incluyen precios en origen de otros mercados)

VARn h: VAR en niveles, modelización horizontal

VECM h : Modelo de Corrección del Error (Vector Error Correction Model), que impone la restricción de cointegración previamente contrastada y aceptada, modelización horizontal

VARd v: VAR en diferencias, modelización vertical (se incluye el precio al consumo)

VARn v: VAR en niveles, modelización vertical

VECM v: Modelo de Corrección del Error, modelización vertical

En el Anexo 3 se presentan las variables ficticias incluidas en los modelos multivariantes. Estas variables están inspiradas por los datos atípicos identificados en la fase univariante. Su inclusión garantiza una correcta especificación de los residuos en términos de normalidad, ausencia de autocorrelación y procesos ARCH. Su inclusión queda además justificada por su significatividad conjunta (ver Cuadros 10 a 15). La D inicial significa que en los modelos VAR en diferencias o VECM, se incluyen diferenciadas; LS: *level shift* of cambio de nivel; TC: *transitory change* o cambio transitorio; AO: *additive outlier* o anómalo aditivo.

A					4
Α	n	\mathbf{e}	X (\mathbf{a}	

		Vocumo					Ovino			
ogno	mes	Vacuno Poa_lbin	Pov_nac	Pcv_nac	Pov_ger	Pov_fr	Poo_eb	200 200	n 00 n 00	poo_fr
agno 1997	1	2.855	2.850	7.148	2.745	2.742	6.318	poo_nac 4.181	pco_nac 7.598	4.423
1997	2	2.795	2.784	7.374	2.664	2.688	6.214	4.127	7.238	4.390
1997	3	2.795	2.686	7.375	2.697	2.621	6.251	3.974	7.255	4.712
1997	4	2.795	2.681	7.396	2.623	2.507	5.139	3.086	7.035	4.497
1997	5	2.771	2.666	7.398	2.598	2.543	5.087	3.171	6.880	3.893
1997	6	2.723	2.649	7.396	2.584	2.597	4.764	3.118	6.697	3.586
1997	7	2.705	2.662	7.398	2.600	2.681	5.218	3.510	6.823	3.668
1997	8	2.843	2.736	7.415	2.663	2.766	6.026	4.057	7.021	3.813
1997	9	2.915	2.819	7.463	2.678	2.783	6.702	4.481	7.432	4.053
1997	10	2.927	2.786	7.536	2.712	2.811	6.925	4.655	7.582	3.962
1997	11	3.011	2.903	7.542	2.758	2.853	7.033	4.763	7.673	4.047
1997	12	3.173	3.088	7.594	2.789	2.867	6.823	4.726	8.106	4.209
1998	1	3.185	3.132	7.540	2.838	2.973	5.849	4.081	8.157	4.443
1998	2	3.131	3.073	7.535	2.866	3.021	4.876	3.148	7.088	4.000
1998	3	2.993	2.860	7.527	2.871	2.814	4.929	3.167	6.447	3.786
1998	4	2.993	2.831	7.526	2.781	2.786	4.719	3.022	6.385	3.896
1998	5	2.999	2.873	7.528	2.676	2.785	4.809	3.039	6.320	3.816
1998	6	2.885	2.755	7.525	2.673	2.719	5.432	3.402	6.366	3.790
1998	7	2.867	2.682	7.538	2.679	2.700	6.137	4.135	6.844	3.786
1998	8	2.969	2.842	7.558	2.737	2.789	5.699	3.906	7.015	3.715
1998	9	3.005	2.881	7.570	2.699	2.774	5.643	3.888	7.110	3.708
1998	10	3.005	2.867	7.580	2.666	2.741	5.662	3.795	7.251	3.423
1998	11	3.005	2.889	7.552	2.669	2.722	5.500	3.853	7.541	3.421
1998	12	3.011	2.918	7.554	2.706	2.778	5.545	3.777	7.739	3.561
1999	1	3.083	2.999	7.577	2.764	2.896	4.722	3.214	7.286	3.574
1999	2	2.999	2.909	7.599	2.771	2.823	4.726	3.371	6.881	3.551
1999	3	2.915	2.834	7.606	2.766	2.881	4.689	3.463	6.732	3.811
1999	4	2.915	2.832	7.606	2.709	2.844	4.418	3.204	6.636	3.924
1999	5	2.861	2.774	7.609	2.651	2.866	4.245	3.012	6.534	3.823
1999	6	2.825	2.688	7.606	2.646	2.797	4.651	3.266	6.572	3.816
1999	7	2.783	2.673	7.596	2.606	2.732	4.809	3.610	6.579	3.674
1999	8	2.933	2.791	7.596	2.614	2.749	5.583	4.268	6.860	3.536
1999	9	2.975	2.805	7.597	2.635	2.777	6.191	4.585	7.571	3.254
1999	10	2.975	2.826	7.596	2.629	2.782	7.087	5.195	7.926	3.253
1999	11	3.065	2.973	7.571	2.673	2.826	7.243	5.421	8.315	3.867
1999	12	3.155	3.072	7.616	2.706	2.885	7.153	5.410	8.769	4.184
2000	1	3.149	3.046	7.639	2.737	2.979	5.650	4.121	8.087	4.354
2000	2	3.065	2.981	7.634	2.762	2.922	5.042	3.679	7.269	4.430
2000	3	3.047	2.937	7.640	2.792	2.951	4.196	3.035	6.755	4.505
2000	4	3.005	2.938	7.649	2.755	2.938	4.185	2.904	6.390	4.421
2000	5	2.987	2.938	7.701	2.718	2.934	5.057	3.254	6.672	4.178
2000	6	2.855	2.887	7.737	2.683	2.882	5.012	3.362	6.704	3.953
2000	7	2.891	2.888	7.750	2.689	2.896	5.566	3.773	6.982	3.861
2000	8	2.945	2.937	7.757	2.764	2.908	6.560	4.589	7.487	3.883
2000	9	2.921	2.900	7.777	2.740	2.863	6.550	4.384	7.857	3.862
2000	10	2.885	2.903	7.781	2.773	2.842	6.077	4.336	7.842	4.005
2000	11	2.693	2.777	7.775	2.651	2.493	5.650	4.031	7.672	4.519
2000	12	2.284	2.413	7.746	2.228	2.302	6.477	4.556	8.522	4.963
2001	1	2.266	2.296	7.705	1.895	2.321	5.506	3.858	8.268	5.058
2001	2	2.236	2.174	7.530	1.769	2.171	6.725	4.804	8.487	5.120
2001	3	2.134	2.156	7.491	2.023	2.200	6.011	4.388	8.543	5.479
2001	4	2.174	2.372	7.441	2.101	2.239	5.898	4.283	8.415	5.713
2001	5	2.350	2.453	7.589	2.165	2.357	5.748	3.982	8.353	5.577
2001	6	2.306	2.428	7.618	2.183	2.421	5.658	3.903	8.231	5.239
2001	7	2.314	2.395	7.639	2.171	2.239	5.909	4.049	8.261	4.997
2001	8	2.837	2.504	7.672	2.225	2.240	6.432	4.661	8.391	5.130
2001	9	2.930	2.485	7.669	2.202	2.279	7.070	5.089	8.723	5.497
2001	10	2.840	2.336	7.731	2.233	2.282	8.067	5.836	9.061	5.370
2001	11	3.125	2.692	7.778	2.280	2.493	8.453	6.327	9.817	5.892
2001	12	3.215	2.803	7.907	2.285	2.594	7.747	5.751	10.297	6.165
2002	1	3.328	2.874	7.900	2.317	2.707	6.220	4.401	9.078	6.303
2002	2	3.273	2.840	7.885	2.367	2.683	5.464	3.944	7.868	5.771
2002	3	3.250	2.817	7.892	2.410	2.681	5.004	3.598	7.750	5.707
2002	4	3.292	2.852	7.913	2.423	2.674	4.638	3.244	7.873	5.260
2002	5	3.232	2.471	7.903	2.399	2.723	5.158	3.701	7.143	4.836
2002	6	3.265	2.376	7.913	2.397	2.700	5.320	3.757	7.130	4.471
2002	7	3.250	2.672	7.918	2.442	2.664	6.208	4.351	7.822	4.286
2002	8	3.250	2.745	7.918	2.476	2.757	6.540	4.834	8.018	4.308
2002	9	3.250	2.780	7.905	2.506	2.777	6.986	5.045	8.178	4.738
2002	10	2.960	2.775	7.918	2.510	2.767	6.610	4.807	8.258	4.780
2002	11	3.050	2.482	7.933	2.492	2.824	6.935	5.039	8.380	5.124
2002	12	3.100	2.889	7.915	2.539	2.864	6.956	5.016	8.688	5.465

		Vacuno					Ovino			
agno	mes	Poa_lbin	Pov_nac	Pcv_nac	Pov_ger	Pov_fr	Poo_eb	poo_nac	pco_nac	poo_fr
2003	1	3.136	2.886	7.950	2.504	2.895	5.830	4.180	8.592	5.551
2003	2	3.160	2.910	7.990	2.516	2.918	5.655	4.117	8.315	5.228
2003	3	3.115	2.870	7.960	2.518	2.854	5.034	3.685	8.262	5.017
2003	4	3.073	2.865	7.973	2.494	2.735	5.210	3.870	8.313	5.227
2003	5	3.110	2.893	7.965	2.437	2.694	5.190	3.938	8.358	5.257
2003	6	3.223	2.781	7.980	2.407	2.650	5.110	3.603	8.248	4.726
2003	7	3.044	2.758	8.000	2.396	2.598	5.681	3.952	8.200	4.473
2003	8	3.050	2.805	8.060	2.403	2.604	6.459	4.402	8.250	4.442
2003	9	3.050	2.788	7.988	2.431	2.641	6.563	4.701	8.480	4.575
2003	10	3.090	2.731	7.994	2.442	2.652	7.406	5.048	8.606	4.509
2003	11	3.173	2.750	8.008	2.452	2.672	7.193	5.166	8.790	4.565
2003	12	3.240	2.854	8.010	2.417	2.659	6.920	5.126	9.008	4.575
2004	1	3.345	2.923	6.914	2.622	2.981	6.644	4.666	9.020	5.045
2004	2	3.310	2.860	8.215	2.666	3.037	6.200	4.178	8.473	5.158
2004	3	3.136	2.796	8.448	2.846	3.102	5.408	3.762	8.454	5.153
2004	4	3.093	2.778	8.513	3.018	3.072	5.210	3.646	8.343	5.175
2004	5	3.070	2.704	8.480	3.027	3.076	4.903	3.289	8.320	4.901
2004	6	3.094	2.667	8.523	2.937	3.061	5.113	3.479	8.180	4.620
2004	7	3.070	2.652	8.542	2.804	2.968	6.032	4.145	8.142	4.321
2004	8	3.070	2.642	8.458	2.836	2.974	6.525	4.607	8.408	4.346
2004	9	3.070	2.641	8.393	2.933	2.911	6.730	4.841	8.810	4.624
2004	10	3.070	2.642	8.066	2.907	2.897	7.886	5.651	9.248	4.639
2004	11	3.185	2.778	8.293	2.906	3.027	7.603	5.160	9.758	4.977
2004	12	3.240	2.794	8.363	2.913	3.107	6.810	4.838	9.968	5.158
2005	1	3.280	2.816	8.378	2.622	2.981	6.380	4.339	9.910	5.200
2005	2	3.200	2.853	8.398	2.666	3.037	5.460	3.682	9.585	4.919
2005	3	3.236	2.916	8.404	2.846	3.102	5.866	4.107	9.364	4.800
2005	4	3.275	2.926	8.620	3.018	3.072	5.825	4.104	9.333	4.932
2005	5	3.238	2.897	8.800	3.027	3.076	5.195	3.842	9.315	4.757
2005	6	3.215	2.858	8.885	2.937	3.061	5.473	4.080	9.208	4.625
2005	7	3.170	2.836	8.984	2.804	2.968	6.116	4.522	9.518	4.574
2005	8	3.208	2.902	8.990	2.836	2.974	6.278	4.840	9.230	4.621
2005	9	3.230	2.940	8.910	2.933	2.911	6.758	5.268	9.418	4.658
2005	10	3.313	2.972	8.840	2.907	2.897	8.400	6.359	9.735	4.601
2005	11	3.515	3.101	9.003	2.906	3.027	10.188	7.390	10.205	4.972
2005	12	3.560	3.273	9.160	2.913	3.107	9.636	7.076	11.362	5.152

		Porcino			1	Pollo		
agno	mes	pop_nac	pcp_nac	pop_fr	pop_net	popl_nac	pcpl_nac	popl_fr
1997 1997	1 2	1.460 1.497	4.594 4.561	1.357 1.408	1.314 1.319	1.066 1.126	1.880 1.848	1.177 1.120
1997	3	1.603	4.559	1.534	1.401	1.047	1.801	1.059
1997	4	1.793	4.667	1.664	1.823	1.081	1.778	1.164
1997	5	2.139	5.160	1.968	1.979	1.065	1.372	1.202
1997 1997	6 7	1.818	5.155	1.755 1.737	1.628	1.003	1.717	1.142
1997	8	1.700 1.751	5.041 5.029	1.737	1.556 1.734	1.074 1.210	1.710 1.810	1.122 1.117
1997	9	1.805	5.037	1.732	1.663	1.275	1.900	1.076
1997	10	1.574	4.963	1.613	1.482	1.027	1.798	1.052
1997	11	1.659	4.840	1.448	1.401	1.046	1.773	1.015
1997 1998	12 1	1.392 1.362	4.817 4.772	1.306 1.337	1.176 1.150	1.029 1.018	1.794 1.775	1.421 1.421
1998	2	1.362	4.772	1.394	1.130	1.046	1.773	1.540
1998	3	1.418	4.622	1.350	1.204	1.051	1.763	1.569
1998	4	1.398	4.561	1.257	1.128	1.002	1.721	1.495
1998	5	1.383	4.577	1.233	1.057	0.952	1.696	1.495
1998 1998	6 7	1.433 1.371	4.558 4.593	1.258 1.232	1.078 1.034	1.077 1.134	1.728 1.761	1.471 1.383
1998	8	1.279	4.627	1.164	0.942	1.134	1.701	1.474
1998	9	1.065	4.605	1.115	0.876	1.278	1.843	1.380
1998	10	0.916	4.447	1.060	0.784	1.097	1.808	1.348
1998	11	0.762	4.263	0.951	0.683	0.929	1.685	1.422
1998	12	0.936	4.243	1.009	0.835	0.930	1.686	1.502
1999 1999	1 2	0.861 1.000	4.247 4.160	0.992 1.019	0.704 0.818	0.869 0.957	1.646 1.675	1.342 1.431
1999	3	1.009	4.209	1.049	0.845	0.869	1.679	1.456
1999	4	1.069	4.231	0.967	0.823	0.805	1.611	1.555
1999	5	1.154	4.190	1.023	0.857	0.858	1.618	1.473
1999	6	1.426	4.354	1.307	1.070	0.693	1.537	1.461
1999 1999	7 8	1.375 1.316	4.449 4.482	1.334 1.250	1.065 1.090	0.782 0.906	1.517 1.561	1.461 1.408
1999	9	1.231	4.463	1.310	1.077	1.036	1.682	1.448
1999	10	1.041	4.380	1.181	0.984	0.841	1.622	1.448
1999	11	1.008	4.287	1.109	0.941	0.880	1.631	1.443
1999	12 1	1.064	4.289	1.083 1.150	0.900	0.809	1.635	1.372 1.387
2000 2000	2	1.081 1.275	4.292 4.300	1.177	0.958 1.103	0.952 1.065	1.649 1.716	1.343
2000	3	1.397	4.348	1.290	1.150	1.192	1.813	1.431
2000	4	1.429	4.387	1.332	1.203	1.123	1.834	1.448
2000	5	1.517	4.485	1.431	1.295	0.950	1.773	1.542
2000 2000	6 7	1.645 1.673	4.602 4.726	1.489 1.503	1.349 1.316	0.920 1.020	1.728 1.777	1.601 1.547
2000	8	1.493	4.755	1.407	1.332	1.044	1.802	1.518
2000	9	1.390	4.752	1.411	1.295	1.283	1.910	1.582
2000	10	1.327	4.703	1.448	1.382	1.250	1.957	1.613
2000	11	1.421	4.680	1.575	1.430	0.989	1.869	1.733
2000 2001	12 1	1.529 1.588	4.815 4.893	1.527 1.543	1.444 1.370	1.332 1.259	2.073 2.160	1.761 1.795
2001	2	1.867	5.038	1.726	1.599	1.394	2.239	1.811
2001	3	2.032	5.324	1.967	1.810	1.387	2.270	1.861
2001	4	1.925	5.354	1.812	1.604	1.231	2.190	1.885
2001	5	2.047	5.381	1.871	1.374	1.140	2.104	1.874
2001 2001	6 7	1.980 1.896	5.413 5.447	1.836 1.637	1.317 1.300	1.090 1.301	2.069 2.137	1.768 1.753
2001	8	1.791	5.449	1.646	1.450	1.313	2.189	1.643
2001	9	1.674	5.401	1.543	1.377	1.181	2.159	1.601
2001	10	1.200	5.269	1.426	1.334	0.856	2.010	1.677
2001	11	1.352	5.139	1.337	1.267	0.963	1.966	1.398
2001 2002	12 1	1.335 1.283	5.112 5.066	1.397 1.269	1.178 1.233	0.751 0.752	1.980 1.956	1.606 1.600
2002	2	1.338	5.015	1.297	1.226	0.806	1.935	1.586
2002	3	1.457	5.028	1.457	1.336	1.032	1.966	1.500
2002	4	1.453	4.988	1.298	1.217	1.141	2.000	1.500
2002	5	1.481	4.980	1.202	1.229	1.049	2.015	1.592
2002 2002	6 7	1.591 1.558	5.013 5.054	1.299 1.390	1.213 1.226	0.773 0.967	2.013 2.056	1.638 1.700
2002	8	1.413	5.083	1.253	1.138	1.028	2.103	1.700
2002	9	1.294	5.105	1.356	1.214	1.217	2.123	1.687
2002	10	1.176	5.100	1.241	1.161	1.092	2.130	1.581
2002	11	1.180	5.103	1.233	1.086	0.857	2.118	1.550
2002	12	1.208	5.098	1.232	1.045	0.754	2.115	1.550

		Porcino]	Pollo		
agno	mes	pop_nac	pcp_nac	pop_fr	pop_net	popl_nac	pcpl_nac	popl_fr
2003	1	1.210	5.054	1.209	1.120	0.900	2.120	1.502
2003	2	1.306	5.055	1.198	1.195	0.835	2.108	1.491
2003	3	1.308	5.082	1.211	1.136	1.092	2.152	1.457
2003	4	1.270	5.075	1.160	1.121	0.869	2.120	1.533
2003	5	1.268	5.093	1.167	1.098	1.085	2.193	1.737
2003	6	1.340	5.100	1.197	1.158	1.033	2.208	1.820
2003	7	1.489	5.210	1.314	1.172	1.443	2.378	1.955
2003	8	1.472	5.345	1.335	1.185	1.560	2.543	1.943
2003	9	1.367	5.300	1.437	1.347	1.531	2.630	2.027
2003	10	1.189	5.308	1.212	1.195	1.011	2.440	2.028
2003	11	1.157	5.255	1.183	1.114	0.978	2.220	1.860
2003	12	1.131	5.213	1.083	0.979	0.683	2.250	1.552
2004	1	1.157	5.202	1.059	1.090	1.141	2.204	1.553
2004	2	1.352	5.188	1.186	1.211	1.156	2.168	1.489
2004	3	1.427	5.218	1.324	1.303	1.288	2.228	1.652
2004	4	1.393	5.265	1.224	1.224	1.323	2.268	1.732
2004	5	1.481	5.280	1.222	1.221	1.443	2.393	1.867
2004	6	1.649	5.318	1.440	1.415	1.407	2.395	1.870
2004	7	1.595	5.416	1.427	1.413	1.555	2.518	1.763
2004	8	1.433	5.465	1.361	1.408	1.443	2.595	1.715
2004	9	1.426	5.503	1.437	1.460	1.463	2.483	1.904
2004	10	1.256	5.536	1.356	1.323	1.460	2.594	1.928
2004	11	1.253	5.545	1.330	1.312	1.494	2.555	1.884
2004	12	1.336	5.525	1.390	1.391	1.510	2.520	1.503
2005	1	1.350	5.548	1.343	1.288	1.540	2.523	1.510
2005	2	1.438	5.543	1.381	1.340	1.487	2.498	1.636
2005	3	1.482	5.542	1.350	1.280	1.528	2.516	1.727
2005	4	1.380	5.583	1.238	1.214	1.618	2.615	1.724
2005	5	1.388	5.560	1.276	1.288	1.632	2.635	1.772
2005	6	1.589	5.560	1.441	1.336	1.499	2.610	1.918
2005	7	1.586	5.596	1.391	1.316	1.384	2.540	1.946
2005	8	1.542	5.598	1.424	1.340	1.374	2.530	1.891
2005	9	1.446	5.600	1.356	1.319	1.293	2.482	1.945
2005	10	1.301	5.528	1.324	1.287	1.232	2.418	1.698
2005	11	1.285	5.550	1.327	1.312	1.132	2.270	1.528
2005	12	1.393	5.546	1.352	1.348	1.320	2.282	1.251

	(Cebada		N	1 aíz				Cebada		1	Maíz	
año	mes	poc_nac	poc_fr	poc_uk	pom _nac	pom_fr	año	mes	poc_nac	poc_fr	poc_uk	pom _nac	pom_fr
1997	1	0.137	0.132	0.136	0.151	0.135	2003	1	0.128	0.106	0.097	0.139	0.116
1997	2	0.141	0.132	0.128	0.149	0.135	2003	2	0.129	0.105	0.099	0.138	0.116
1997 1997	3	0.141 0.146	0.136 0.140	0.127 0.131	0.149 0.151	0.140 0.144	2003	3	0.127	0.105	0.097	0.137	0.113
1997	5	0.153	0.135	0.128	0.150	0.134	2003	4	0.126	0.106	0.099	0.136	0.115
1997	6	0.146	0.122	0.117	0.151	0.137	2003	5	0.126	0.104	0.103	0.137	0.115
1997	7	0.143	0.119	0.106	0.151	0.135	2003	6	0.122	0.101	0.106	0.136	0.115
1997	8	0.143	0.121	0.106	0.151	0.137	2003	7	0.121	0.101	0.100	0.135	0.113
1997	9	0.143	0.123	0.121	0.151	0.131	2003	8	0.125	0.103	0.105	0.139	0.120
1997	10	0.143	0.124	0.119	0.146	0.122	2003	9	0.129	0.117	0.103	0.133	0.133
1997 1997	11 12	0.143 0.143	0.123 0.121	0.115 0.114	0.144 0.144	0.124 0.125	2003	10	0.129	0.123	0.114	0.143	0.148
1998	1	0.143	0.121	0.114	0.144	0.125	2003	11	0.138	0.124	0.118	0.150	0.132
1998	2	0.141	0.120	0.112	0.146	0.125	2003	12			0.128		0.163
1998	3	0.137	0.117	0.111	0.145	0.124	2003		0.153	0.140 0.140	0.140	0.171 0.174	0.165
1998	4	0.133	0.115	0.109	0.143	0.122		1 2	0.157				
1998	5	0.132	0.115	0.114	0.146	0.125	2004		0.163	0.135	0.139	0.175	0.164
1998	6	0.125	0.107	0.111	0.148	0.127	2004	3	0.163	0.125	0.131	0.175	0.162
1998	7	0.121	0.099	0.106	0.149	0.127	2004	4	0.164	0.122	0.136	0.178	0.158
1998 1998	8 9	0.123 0.123	0.107 0.112	0.103 0.109	0.150 0.148	0.135 0.124	2004	5	0.165	0.122	0.129	0.181	0.148
1998	10	0.123	0.112	0.109	0.139	0.124	2004	6	0.147	0.103	0.114	0.176	0.143
1998	11	0.127	0.117	0.120	0.139	0.125	2004	7	0.130	0.096	0.096	0.173	0.135
1998	12	0.129	0.117	0.120	0.141	0.126	2004	8	0.129	0.100	0.093	0.170	0.131
1999	1	0.132	0.120	0.120	0.144	0.130	2004	9	0.129	0.104	0.098	0.154	0.113
1999	2	0.133	0.120	0.121	0.144	0.129	2004	10	0.129	0.108	0.098	0.140	0.101
1999	3	0.134	0.120	0.120	0.142	0.128	2004	11	0.131	0.110	0.102	0.137	0.105
1999	4	0.135	0.124	0.123	0.142	0.132	2004	12	0.132	0.111	0.104	0.136	0.108
1999 1999	5 6	0.138 0.136	0.123 0.115	0.128 0.131	0.143 0.144	0.136 0.139	2005	1	0.131	0.111	0.102	0.135	0.108
1999	7	0.130	0.115	0.131	0.144	0.139	2005	2	0.130	0.114	0.104	0.134	0.109
1999	8	0.132	0.118	0.114	0.148	0.137	2005	3	0.130	0.110	0.103	0.135	0.111
1999	9	0.136	0.121	0.119	0.148	0.135	2005	4	0.133	0.105	0.105	0.137	0.111
1999	10	0.134	0.121	0.120	0.143	0.123	2005	5	0.134	0.106	0.103	0.137	0.114
1999	11	0.137	0.123	0.123	0.145	0.128	2005	6	0.138	0.111	0.098	0.141	0.123
1999	12	0.138	0.124	0.123	0.146	0.128	2005	7	0.139	0.106	0.103	0.143	0.128
2000	1	0.141	0.126	0.126	0.148	0.129	2005	8	0.140	0.107	0.102	0.145	0.122
2000 2000	2 3	0.141 0.142	0.127 0.128	0.125 0.126	0.149 0.150	0.131 0.134	2005	9	0.139	0.107	0.101	0.143	0.125
2000	4	0.142	0.128	0.127	0.151	0.134	2005	10	0.139	0.108	0.103	0.143	0.121
2000	5	0.141	0.126	0.128	0.151	0.137	2005	11	0.142	0.110	0.104	0.145	0.122
2000	6	0.127	0.119	0.123	0.150	0.136	2005	12	0.143	0.110	0.107	0.146	0.121
2000	7	0.118	0.111	0.113	0.153	0.148							
2000	8	0.119	0.114	0.109	0.158	0.153							
2000	9	0.122	0.114	0.108	0.159	0.121							
2000 2000	10 11	0.124 0.127	0.118 0.123	0.113 0.115	0.149 0.144	0.120 0.123							
2000	12	0.127	0.123	0.113	0.144	0.123							
2001	1	0.131	0.120	0.118	0.148	0.127							
2001	2	0.128	0.118	0.119	0.146	0.127							
2001	3	0.125	0.117	0.118	0.143	0.126							
2001	4	0.123	0.111	0.122	0.143	0.127							
2001	5	0.126	0.111	0.125	0.144	0.130							
2001 2001	6 7	0.127 0.134	0.111 0.113	0.125 0.120	0.145 0.147	0.133 0.137							
2001	8	0.134	0.113	0.120	0.147	0.137							
2001	9	0.140	0.108	0.112	0.143	0.132							
2001	10	0.139	0.109	0.110	0.141	0.122							
2001	11	0.140	0.113	0.111	0.142	0.123							
2001	12	0.143	0.114	0.116	0.143	0.125							
2002	1	0.144	0.114	0.116	0.144	0.127							
2002	2	0.143	0.113	0.114	0.144	0.124							
2002 2002	3	0.140 0.137	0.104 0.103	0.109 0.106	0.144 0.144	0.120 0.120							
2002	5	0.137	0.103	0.100	0.144	0.120							
2002	6	0.124	0.097	0.100	0.143	0.120							
2002	7	0.120	0.094	0.094	0.146	0.128							
2002	8	0.120	0.097	0.089	0.149	0.141							
2002	9	0.121	0.106	0.092	0.148	0.119							
2002	10	0.124	0.109	0.099	0.146	0.115							
2002 2002	11 12	0.126 0.127	0.108 0.108	0.099 0.097	0.140 0.139	0.115 0.119							
2002	12	0.14/	0.108	0.097	0.139	0.119							

Anexo 2

Precio	añojo en	Lonja de	Binéfar (P	oa_lbin)																		
		real	ARIMA				VARd h				VARn h				VARd v				VARn v			
año –	mes	Real	h=1	h=3	h=6	Dinam	h=1	h=3	h=6	Dinam _	h=1	h=3	h=6	Dinam _	h=1	h=3	h=6	Dinam	h=1	h=3	h=6	Dinam
2004	1	3.345																				
2004	2	3.310																				
2004	3_	3.136																				
2004	_ 4_	3.093																				
2004	5	3.070																				
_ 2004_	_ 6_	3.094	•	•																		
2004	7	3.070	3.080			3.080	3.096	•		3.096	2.920			2.920	3.076		•	3.076	3.096	•		3.096
2004	8	3.070	3.109			3.119	3.151	•		3.183	3.029		•	2.813	3.146			3.152	3.163	•		3.174
2004	9	3.070	3.089	3.140		3.140	3.081	3.211	•	3.211	3.007	2.822		2.822	3.091	3.174		3.174	3.144	3.192		3.192
_ 2004_	10	3.070	3.097	3.156		3.166	3.057	3.172	•	3.213	3.023	2.989		2.870	3.060	3.168		3.174	3.092	3.160		3.184
2004	11	3.185	3.160	3.206		3.256	3.134	3.134	•	3.280	3.171	3.131		2.982	3.146	3.151		3.245	3.180	3.227		3.323
_ 2004_	12	3.240	3.258	3.260	3.330	3.330	3.264	3.187	3.351	3.351	3.191	3.184	3.017	3.017	3.227	3.196	3.316	3.316	3.252	3.246	3.396	3.396
2005	1	3.280	3.306	3.299	3.383	3.394	3.293	3.255	3.355	3.398	3.222	3.184	3.200	2.991	3.282	3.238	3.344	3.349	3.229	3.235	3.422	3.458
_ 2005_	_ 2_	3.200	3.250	3.294	3.316	3.363	3.231	3.271	3.204	3.350	3.259	3.152	3.124	2.929	3.218	3.209	3.194	3.287	3.205	3.189	3.286	3.408
_ 2005_	_ 3	3.236	3.105	3.181	3.200	3.270	3.089	3.162	3.098	3.260	3.122	3.148	3.096	2.921	3.120	3.144	3.093	3.209	3.137	3.127	3.174	3.348
2005	4	3.275	3.220	3.136	3.155	3.252	3.209	3.114	3.100	3.240	3.164	3.101	3.102	2.925	3.229	3.129	3.085	3.195	3.169	3.132	3.037	3.350
2005	5	3.238	3.259	3.073	3.165	3.237	3.240	2.990	3.122	3.199	3.137	3.099	3.056	2.889	3.251	3.080	3.096	3.167	3.172	3.105	3.092	3.323
2005	6	3.215	3.220	3.188	3.137	3.224	3.183	3.114	3.052	3.146	3.085	3.053	3.014	2.818	3.185	3.158	3.050	3.111	3.120	3.059	3.039	3.263
2005	7	3.170	3.199	3.225	3.092	3.210	3.202	3.166	3.002	3.128	3.047	2.994	3.011	2.778	3.200	3.186	3.026	3.089	3.174	3.091	3.024	3.255
2005	8	3.208	3.201	3.234	3.065	3.249	3.226	3.224	2.974	3.196	3.104	3.043	3.073	2.866	3.225	3.224	3.062	3.156	3.270	3.215	3.099	3.341
2005	9	3.230	3.223	3.246	3.216	3.270	3.227	3.280	3.170	3.217	3.120	3.075	3.111	2.907	3.224	3.280	3.209	3.177	3.257	3.280	3.118	3.352
2005	10	3.313	3.245	3.232	3.287	3.296	3.230	3.249	3.240	3.216	3.129	3.097	3.126	2.897	3.230	3.241	3.257	3.175	3.234	3.283	3.137	3.322
2005	11	3.515	3.410	3.336	3.363	3.385	3.394	3.302	3.319	3.281	3.272	3.194	3.224	2.962	3.393	3.298	3.316	3.245	3.405	3.374	3.298	3.442
2005	12	3.560	3.585	3.413	3.429	3.459	3.593	3.368	3.421	3.352	3.363	3.232	3.276	3.004	3.587	3.372	3.421	3.316	3.516	3.410	3.403	3.502

Precio Vacu	uno agre	gado nacio	nal (Pov_na	ic)														
			ARIMA				VARd h				VECM h				VARn h			
_agno _	mes	Real	h=1	h=3	h=6	dinam	h=1	h=3	h=6	dinam	h=1	h=3	h=6	dinam	h=1	h=3	h=6	dinam
2004		2.923																
2004		2.860																
2004_		2.796																
2004		2.778																
2004_		2.704																
2004_		2.667																
2004_		2.652	2.659		•	2.659	2.611			2.611	2.641		•	2.641	2.569		•	2.569
2004_		2.642	2.715		•	2.723	2.705			2.693	2.704			2.716	2.646			2.590
2004_		2.641	2.626	2.722		2.722	2.659	2.697		2.697	2.651	2.713		2.713	2.643	2.628		2.628
2004	10	2.642	2.622	2.694		2.703	2.637	2.695		2.676	2.649	2.689		2.701	2.629	2.664		2.592
2004_	11	2.778	2.713	2.671		2.772	2.702	2.704		2.739	2.730	2.718		2.773	2.709	2.726		2.629
2004_	12_	2.794	2.885	2.785	2.868	2.868	2.834	2.771	2.798	2.798	2.858	2.836	2.843	2.843	2.764	2.731	2.693	2.693
2005		2.816	2.806	2.833	2.884	2.892	2.820	2.789	2.853	2.834	2.836	2.860	2.880	2.885	2.786	2.731	2.788	2.718
2005		2.853	2.767	2.862	2.742	2.843	2.658	2.790	2.733	2.765	2.671	2.829	2.779	2.820	2.752	2.731	2.733	2.662
2005		2.916	2.811	2.699	2.705	2.787	2.785	2.698	2.681	2.710	2.819	2.727	2.789	2.777	2.686	2.704	2.627	2.595
2005		2.926	2.937	2.710	2.727	2.786	2.940	2.632	2.687	2.724	2.944	2.635	2.788	2.793	2.832	2.733	2.643	2.618
2005_		2.897	2.918	2.802	2.796	2.777	2.926	2.785	2.724	2.701	2.938	2.799	2.774	2.765	2.780	2.742	2.626	2.582
2005		2.858	2.839	2.878	2.635	2.723	2.839	2.851	2.620	2.640	2.836	2.833	2.642	2.687	2.734	2.701	2.600	2.539
2005		2.836	2.847	2.851	2.634	2.712	2.824	2.836	2.537	2.612	2.823	2.853	2.539	2.667	2.701	2.634	2.601	2.532
_ 2005_		2.902	2.872	2.861	2.773	2.775	2.888	2.870	2.765	2.697	2.876	2.889	2.756	2.744	2.765	2.667	2.683	2.608
2005		2.940	2.904	2.881	2.899	2.774	2.905	2.880	2.886	2.699	2.889	2.874	2.845	2.740	2.807	2.702	2.706	2.623
2005	10	2.972	2.934	2.854	2.870	2.755	2.931	2.873	2.869	2.676	2.932	2.840	2.883	2.721	2.803	2.727	2.679	2.595
	11	3.101	3.073	2.984	2.937	2.825	3.053	2.967	2.922	2.739	3.039	2.934	2.927	2.788	2.929	2.815	2.747	2.649
2005	12	3.273	3.173	3.094	3.024	2.921	3.140	3.065	2.983	2.798	3.162	3.090	2.985	2.855	3.036	2.857	2.817	2.715

		VARd v				VARn v			
.gno	mes	h=1	h=3	h=6	Dinam	h=1	h=3	h=6	Dinam
2004									
2004									
2004									
2004									
2004									
2004									
2004		2.662			2.662	2.755			2.755
2004		2.718			2.727	2.768			2.846
2004		2.625	2.720		2.720	2.690	2.842		2.842
2004	10	2.645	2.694		2.705	2.689	2.790		2.846
2004	11_	2.715	2.711		2.778	2.642	2.829		2.953
2004	12_	2.920	2.790	2.824	2.824	2.936	2.850	3.017	3.017
2005		2.752	2.886	2.810	2.822	2.797	2.769	2.959	3.040
2005		2.741	2.821	2.697	2.759	2.741	2.779	2.805	2.967
2005		2.799	2.619	2.683	2.714	2.751	2.709	2.752	2.947
2005		2.944	2.707	2.832	2.732	2.814	2.736	2.710	2.975
2005		2.904	2.812	2.775	2.725	2.803	2.702	2.698	2.919
2005		2.795	2.870	2.579	2.660	2.758	2.647	2.626	2.842
2005		2.818	2.790	2.624	2.648	2.817	2.687	2.623	2.857
2005		2.888	2.806	2.793	2.722	2.914	2.801	2.705	2.942
2005		2.890	2.865	2.905	2.718	2.912	2.857	2.721	2.936
2005	10	2.927	2.857	2.831	2.704	2.910	2.895	2.736	2.927
2005	11	3.066	2.956	2.874	2.777	3.038	3.002	2.867	3.016
2005	12	3.139	3.057	2.972	2.824	3.140	3.039	2.951	3.068

_Precio Ovi	no en Lo	onja del Ebro	o (Poo_eb)															
			_ARIMA				_VARd h				_VECM h				_VARn h			
agno	mes	real	h=1	h=3	h=6	Dinam	_h=1	h=3	h=6	Dinam	h=1	h=3	_h=6	Dinam	h=1	_h=3	_h=6	_Dinam _
2004_		6.644																
2004_		6.200																
2004_		5.408																
_ 2004_		5.210																
2004		4.903																
2004		5.113																
2004		6.032	5.874			5.874	5.621			5.621	5.630			5.630	5.667			5.667
_ 2004_		6.525	6.391			6.326	6.771			6.216	6.738			6.336	6.786			6.412
2004		6.730	6.708	6.653		6.653	6.922	6.596		6.596	6.908	6.783		6.783	6.925	6.871		6.871
_ 2004_	_ 10 _	7.886	6.550	6.565		6.633	6.947	7.570		6.911	6.901	7.225		7.138	6.947	7.302		7.226
_ 2004_	_ 11 _	7.603	7.860	6.666		6.798	7.908	7.197		6.941	7.697	7.007		7.136	7.626	7.108		7.209
2004_	12 _	6.810	7.373	6.445	6.733	6.733	7.402	6.770	6.764	6.764	7.360	6.800	6.939	6.939	7.374	6.978	7.061	7.061
_ 2005_		6.380	5.910	6.587	5.732	5.876	5.851	6.646	6.331	5.828	5.726	6.153	5.794	5.925	5.753	6.084	5.936	5.980
2005_		5.460	5.944	6.035	5.418	5.634	6.054	5.983	5.708	5.491	5.895	5.655	5.579	5.581	5.883	5.635	5.677	5.650
2005_		5.866	4.775	4.941	4.669	4.984	5.036	5.056	5.032	5.008	5.045	4.987	5.171	5.100	5.115	5.062	5.182	5.136
_ 2005_		5.825	5.797	5.139	5.525	5.048	5.706	5.376	5.514	4.865	5.479	5.061	4.976	4.959	5.377	5.032	4.936	4.975
_ 2005_		5.195	5.548	4.651	5.195	4.944	5.982	5.022	5.427	4.985	5.809	4.993	5.175	5.127	5.760	5.153	5.150	5.157
_ 2005_		5.473	5.157	5.543	4.859	4.952	5.316	6.033	5.164	5.115	5.112	5.371	5.372	5.306	5.295	5.441	5.407	5.352
_ 2005_		6.116	6.112	6.103	5.593	5.560	6.023	6.667	6.232	5.636	5.730	5.842	5.821	5.857	5.871	5.973	5.946	5.917
_ 2005_		6.278	6.722	6.450	5.878	6.219	6.663	6.534	6.289	6.214	6.651	6.027	6.391	6.451	6.629	6.412	6.572	6.518
2005		6.758	6.381	6.841	7.066	6.384	6.619	6.991	7.700	6.590	6.613	6.652	6.584	6.800	6.673	6.828	6.804	6.865
2005	10	8.400	7.582	7.706	7.793	6.942	7.207	7.465	8.236	6.907	7.031	7.169	7.002	7.076	7.195	7.282	7.185	7.139
2005	_ 11 _	10.188	7.906	7.029	7.235	6.852	8.341	7.057	7.323	6.942	8.255	7.017	6.996	7.059	7.915	7.181	7.267	7.120
2005	12	9.636	8.919	6.731	7.025	6.650	9.799	6.992	7.156	6.766	9.375	6.967	6.927	6.886	8.892	7.063	7.054	7.006

Precio Ovi	no en Lo	nja del Ebr	o (Poo_eb)										
		_VARd v				_VECM v				_VARn v			
agno	mes	h=1	h=3	h=6	Dinam	h=1	h=3	h=6	_Dinam	h=1	_h=3	_h=6	_Dinam
2004_													
2004_													
2004													
2004													
2004_													
2004													
2004		5.597		•	5.597	5.734	·	•	5.734	5.538			5.538
2004_		6.836			6.239	6.897			6.569	6.663			6.209
2004_		7.005	6.652		6.652	7.051	7.121		7.121	6.815	6.617		6.617
2004	10	7.013	7.729		6.988	7.029	7.629	•	7.523	6.943	7.127		7.000
2004_	_ 11 _	7.908	7.322		7.024	7.815	7.326		7.523	7.475	7.021		7.050
2004_	12	7.379	6.912	6.883	6.883	7.418	7.019	7.322	7.322	7.207	6.905	6.975	6.975
2005		5.798	6.610	6.502	5.927	5.771	6.351	6.073	6.216	5.680	5.938	5.927	5.949
2005		5.922	5.884	5.781	5.544	5.933	5.813	5.705	5.791	5.582	5.506	5.629	5.621
2005		4.874	5.009	5.087	5.062	5.082	5.138	5.209	5.281	4.837	4.957	5.125	5.101
2005		5.603	5.208	5.484	4.926	5.685	5.347	5.140	5.136	5.238	4.822	4.903	4.920
2005_		5.924	4.765	5.313	4.996	6.093	5.379	5.338	5.275	5.680	4.894	5.120	5.097
2005_		5.330	5.857	5.074	5.125	5.370	6.078	5.512	5.471	5.101	5.235	5.341	5.255
2005		6.078	6.713	6.019	5.630	6.072	6.719	6.325	6.075	5.809	5.850	5.855	5.784
2005		6.720	6.564	6.027	6.237	7.019	6.902	7.259	6.761	6.534	6.165	6.395	6.365
2005		6.721	7.091	7.568	6.645	6.968	7.603	7.667	7.182	6.677	6.629	6.697	6.718
2005	10	7.249	7.532	8.305	6.984	7.325	8.120	8.019	7.493	6.995	7.112	7.089	7.016
2005	11	8.383	7.222	7.374	7.025	8.551	7.746	8.030	7.464	7.891	6.986	7.108	7.028
2005	12	9.938	7.010	7.286	6.885	9.765	7.541	7.883	7.267	8.935	6.902	6.935	6.939

Precio ovin	no agrega	do nacional	(Poo_nac)															
			ARIMA				_VARd h				VECM h				_VARn h			
_agno _	mes	Real	h=1	_h=3	_h=6	_Dinam _	h=1	_h=3	h=6	Dinam	h=1	_h=3	_h=6	_Dinam _	_h=1	_h=3	_h=6	Dinam
2004_		4.666																
2004		4.178																
2004		3.762																
2004_		3.646																
2004		3.289																
2004		3.479																
2004		4.145	3.983			3.983	3.914		•	3.914	3.919			3.919	3.974	•	•	3.974
2004_		4.607	4.564	•		4.490	4.833			4.441	4.848		•	4.561	4.956	•		4.713
2004		4.841	4.833	4.737		4.737	4.862	4.678		4.678	4.864	4.882	•	4.882	4.945	5.082		5.082
2004	10 _	5.651	4.747	4.727	•	4.673	4.977	5.414		4.904	4.955	5.210	•	5.161	5.050	5.403		5.381
2004_	11 _	5.160	5.312	4.942	•	4.880	5.842	5.166	•	5.046	5.718	5.083		5.273	5.752	5.329		5.465
2004_	12 _	4.838	5.201	4.917	4.861	4.861	5.003	4.947	4.929	4.929	5.025	4.990	5.117	5.117	5.201	5.265	5.311	5.311
2005_		4.339	4.231	4.396	4.180	4.148	4.023	4.797	4.505	4.125	3.941	4.418	4.080	4.225	3.987	4.449	4.259	4.320
2005_		3.682	4.095	4.160	4.027	3.990	4.157	3.939	3.997	3.893	4.152	3.890	3.964	3.972	4.279	4.145	4.229	4.161
2005_		4.107	3.535	3.648	3.611	3.578	3.387	3.482	3.577	3.542	3.420	3.531	3.678	3.613	3.591	3.779	3.858	3.784
2005_		4.104	3.820	3.774	3.823	3.682	3.922	3.591	3.858	3.340	3.855	3.541	3.412	3.432	3.782	3.683	3.526	3.590
2005_		3.842	4.169	3.622	3.746	3.635	4.195	3.254	3.441	3.391	4.118	3.374	3.552	3.513	4.111	3.639	3.672	3.640
2005		4.080	3.855	3.589	3.521	3.451	3.902	4.133	3.426	3.486	3.720	3.763	3.710	3.646	3.819	3.821	3.821	3.757
2005		4.522	4.479	4.532	3.966	3.827	4.557	4.737	4.227	3.929	4.278	4.137	4.052	4.125	4.336	4.254	4.205	4.235
2005_		4.840	5.116	4.923	4.347	4.275	5.027	4.991	4.275	4.436	4.893	4.321	4.602	4.658	4.921	4.602	4.831	4.784
2005		5.268	5.284	5.377	4.738	4.552	5.045	5.360	5.482	4.672	4.870	4.704	4.628	4.872	4.942	4.875	4.878	5.008
2005	10	6.359	5.863	6.034	5.958	4.784	5.625	5.600	5.977	4.902	5.347	4.982	4.917	5.062	5.433	5.185	5.123	5.212
2005	11	7.390	5.812	5.802	5.780	4.921	6.490	5.445	5.641	5.048	6.312	5.027	5.086	5.158	6.058	5.201	5.309	5.315
2005	12	7.076	6.422	5.736	5.747	4.888	7.244	5.585	5.607	4.931	6.793	5.081	5.072	5.040	6.674	5.179	5.184	5.233

Precio ovin	o agrega	do nacional VARd v	(Poo_nac)			VECM v				VARn v			
.ño	mes —	h=1	h=3	h=6	Dinam	h=1	h=3	h=6	Dinam	h=1	h=3	h=6	Dinam
2004	_ 1			0									
2004													
2004													
2004													
2004	 5												
2004													
2004		3.824			3.824	3.982			3.982	5.538			5.53
2004		4.944			4.505	5.087			4.903	6.663			6.20
2004		4.919	4.748		4.748	5.011	5.309		5.309	6.815	6.617		6.61
2004	10	5.033	5.552		4.988	5.083	5.669		5.639	6.943	7.127		7.00
2004	11	5.785	5.217		5.098	5.772	5.406		5.694	7.475	7.021		7.05
2004	12	5.119	5.147	5.092	5.092	5.213	5.293	5.576	5.576	7.207	6.905	6.975	6.97
2005		3.989	4.843	4.735	4.286	4.012	4.678	4.430	4.568	5.680	5.938	5.927	5.94
2005		4.054	3.975	4.127	4.029	4.209	4.179	4.211	4.256	5.582	5.506	5.629	5.62
2005		3.304	3.486	3.732	3.688	3.564	3.769	3.836	3.869	4.837	4.957	5.125	5.10
2005		3.727	3.436	3.877	3.440	3.943	3.857	3.606	3.624	5.238	4.822	4.903	4.9
2005_		4.096	2.999	3.371	3.392	4.375	3.772	3.733	3.620	5.680	4.894	5.120	5.09
2005_		3.933	3.817	3.281	3.462	4.006	4.351	3.848	3.754	5.101	5.235	5.341	5.2
2005_		4.592	4.712	3.922	3.856	4.576	4.996	4.528	4.275	5.809	5.850	5.855	5.7
2005_		5.207	5.115	4.035	4.501	5.403	5.385	5.654	5.055	6.534	6.165	6.395	6.3
2005		5.112	5.551	5.208	4.746	5.192	5.761	5.801	5.334	6.677	6.629	6.697	6.7
2005	10	5.616	5.756	6.025	4.984	5.584	6.035	5.987	5.557	6.995	7.112	7.089	7.0
2005	11	6.448	5.508	5.721	5.099	6.498	5.721	6.049	5.585	7.891	6.986	7.108	7.02
2005_	12	7.392	5.610	5.855	5.092	7.127	5.730	5.945	5.480	8.935	6.902	6.935	6.93

Precio	porcin	o agre	gado nacio	nal (Pop_na	ac)														
			Real	_ARIMA				_VARd h				_VECM h				VARn h			
año		mes	Real	h=1	h=3	h=6	Dinam	h=1	h=3	h=6	Dinam	h=1	h=3	h=6	Dinam	h=1	h=3	h=6	Dinam
_ 2	2004	. 1_	1.157																
2	2004	_ 2	1.352																
_	2004	3	1.427																
2	2004	4	1.393																
	2004	5_	1.481																
_	2004	6_	1.649																
	2004	7	1.595	1.712			1.712	1.674		•	1.674	1.657	•	•	1.657	1.677	•	•	1.677
_	2004	. 8_	1.433	1.510	•	•	1.632	1.500	•	•	1.544	1.489			1.512	1.510			1.536
_	2004	- 9_	1.426	1.322	1.514	•	1.514	1.331	1.441	•	1.441	1.366	1.420	•	1.420	1.393	1.449	•	1.449
	2004	10	1.256	1.265	1.236	•	1.336	1.195	1.187	•	1.235	1.231	1.205		1.219	1.249	1.232		1.237
	2004	11	1.253	1.234	1.146		1.313	1.241	1.124		1.236	1.267	1.213		1.231	1.278	1.240		1.246
_	2004	12_	1.336	1.277	1.266	1.330	1.330	1.349	1.268	1.303	1.303	1.368	1.341	1.288	1.288	1.341	1.316	1.263	1.263
	2005	1	1.350	1.345	1.261	1.240	1.337	1.328	1.315	1.240	1.291	1.366	1.348	1.266	1.279	1.377	1.307	1.255	1.253
	2005	2	1.438	1.518	1.440	1.315	1.504	1.458	1.498	1.327	1.457	1.492	1.546	1.426	1.431	1.497	1.510	1.409	1.400
	2005	_ 3_	1.482	1.503	1.587	1.499	1.578	1.514	1.529	1.478	1.517	1.559	1.659	1.557	1.487	1.563	1.659	1.516	1.458
	2005	4_	1.380	1.459	1.570	1.464	1.551	1.441	1.540	1.536	1.508	1.475	1.647	1.570	1.501	1.464	1.619	1.517	1.470
	2005	_ 5_	1.388	1.425	1.538	1.546	1.611	1.509	1.585	1.619	1.578	1.514	1.702	1.710	1.582	1.517	1.667	1.645	1.547
	2005	6_	1.589	1.482	1.620	1.738	1.731	1.486	1.628	1.672	1.660	1.503	1.641	1.879	1.655	1.524	1.609	1.810	1.614
	2005	- 7_	1.586	1.602	1.529	1.747	1.789	1.497	1.549	1.671	1.642	1.526	1.539	1.784	1.635	1.539	1.541	1.701	1.592
	2005	8	1.542	1.475	1.382	1.535	1.705	1.507	1.344	1.543	1.553	1.538	1.423	1.636	1.543	1.514	1.450	1.557	1.497
_	2005	9_	1.446	1.476	1.423	1.441	1.581	1.445	1.325	1.416	1.440	1.443	1.393	1.400	1.433	1.453	1.396	1.377	1.385
	2005	10	1.301	1.273	1.240	1.196	1.395	1.237	1.238	1.175	1.236	1.219	1.229	1.141	1.229	1.209	1.216	1.163	1.183
_	2005	11_	1.285	1.289	1.287	1.149	1.371	1.326	1.240	1.084	1.235	1.307	1.239	1.158	1.229	1.295	1.232	1.188	1.179
	2005	12_	1.393	1.331	1.304	1.285	1.389	1.285	1.328	1.210	1.304	1.358	1.264	1.271	1.288	1.330	1.227	1.234	1.200

Precio po	rcino agr	egado nacio	onal (Pop_na	ac)					
		_VARd v				_VARn v			
año	mes	h=1	h=3	h=6	Dinam	h=1	h=3	h=6	Dinam
2004									
2004									
2004									
2004									
2004									
2004									
2004		1.650			1.650	1.620			1.620
2004		1.524			1.585	1.511			1.535
2004		1.313	1.469		1.469	1.321	1.406		1.406
2004	10	1.241	1.231		1.291	1.211	1.215		1.235
2004	11_	1.219	1.119		1.257	1.211	1.157		1.217
2004	12_	1.304	1.273	1.328	1.328	1.251	1.233	1.258	1.258
2005		1.316	1.251	1.252	1.310	1.305	1.238	1.236	1.250
2005		1.525	1.429	1.326	1.480	1.535	1.416	1.361	1.418
2005		1.479	1.537	1.461	1.524	1.538	1.585	1.481	1.492
2005		1.488	1.584	1.467	1.540	1.520	1.647	1.518	1.509
2005		1.423	1.536	1.537	1.594	1.478	1.641	1.604	1.573
2005		1.447	1.629	1.692	1.680	1.469	1.691	1.774	1.652
2005		1.578	1.459	1.696	1.663	1.562	1.539	1.795	1.634
2005		1.520	1.352	1.505	1.581	1.506	1.379	1.605	1.540
2005		1.454	1.409	1.419	1.466	1.438	1.369	1.462	1.418
2005	10	1.278	1.258	1.136	1.289	1.270	1.230	1.187	1.242
2005	11	1.273	1.261	1.095	1.256	1.273	1.246	1.123	1.223
2005	12	1.350	1.319	1.282	1.327	1.308	1.291	1.238	1.263

Precio	pollo agr	egado nac	ional (Popl_	_nac)										
			ARIMA				VARd h				_VARn h			
año	mes	real	h=1	h=3	h=6	Dinam	h=1	h=3	h=6	Dinam	_h=1	h=3	h=6	Dinam
_2004		1.141												
2004		1.156												
2004		1.288												
_2004		1.323												
_2004		1.443												
2004		1.407												
2004		1.555	1.587			1.587	1.567			1.567	1.638			1.638
2004 _		1.443	1.627			1.651	1.621			1.639	1.633			1.762
2004		1.463	1.545	1.697		1.697	1.533	1.705		1.705	1.555	1.883		1.883
2004	10	1.460	1.239	1.399		1.412	1.246	1.444		1.467	1.364	1.545		1.721
2004 _	11	1.494	1.365	1.248		1.337	1.288	1.203		1.385	1.459	1.328		1.689
2004 _	12	1.510	1.306	1.080	1.184	1.184	1.420	1.136	1.329	1.329	1.534	1.397	1.700	1.700
2005		1.540	1.471	1.259	1.241	1.245	1.611	1.316	1.387	1.409	1.378	1.553	1.580	1.746
2005		1.487	1.523	1.355	1.250	1.291	1.607	1.530	1.280	1.457	1.433	1.606	1.468	1.779
2005_		1.528	1.532	1.520	1.354	1.410	1.587	1.746	1.360	1.544	1.544	1.436	1.562	1.842
2005		1.618	1.472	1.495	1.368	1.373	1.466	1.627	1.401	1.485	1.471	1.448	1.568	1.769
2005		1.632	1.579	1.478	1.425	1.414	1.545	1.512	1.540	1.472	1.538	1.523	1.562	1.748
2005 _		1.499	1.505	1.391	1.388	1.338	1.551	1.377	1.586	1.395	1.504	1.429	1.389	1.663
2005		1.384	1.632	1.607	1.563	1.540	1.668	1.629	1.692	1.558	1.671	1.619	1.594	1.821
2005		1.374	1.493	1.665	1.601	1.619	1.497	1.757	1.648	1.633	1.568	1.698	1.663	1.896
2005		1.293	1.497	1.702	1.653	1.676	1.439	1.779	1.658	1.704	1.516	1.793	1.706	1.970
2005	10	1.232	1.177	1.388	1.467	1.398	1.118	1.356	1.538	1.466	1.276	1.493	1.565	1.774
2005	11	1.132	1.248	1.319	1.433	1.327	1.139	1.180	1.541	1.385	1.217	1.359	1.534	1.718
2005	12	1.320	1.114	1.169	1.336	1.177	1.132	1.011	1.453	1.329	1.177	1.328	1.527	1.714

Precio	o pollo.:	agregad	o nacio	onal (Po	ol nac)										
	o pono			Rd v					V.	ARn v					
año		mes	h=1	h=	=3	h=6		Dinam	h=1		h=3		h=6		Dinam
_	2004			_					_		_				
	2004														
_	2004														
_	2004		-												
	2004														
_	2004														
	2004			1.574 .				1.574		1.498					1.498
_	2004			1.621 .				1.668	;	1.534					1.493
_	2004			1.546	1.747			1.747	•	1.474		1.494			1.494
_	2004	10		1.332	1.520			1.573		1.163		1.237			1.202
_	2004	11		1.362	1.263			1.491		1.247		1.070			1.086
_	2004	12		1.368	1.124		1.374	1.374		1.389	(0.978		1.009	1.009
	2005			1.402	1.289		1.347	1.401		1.524		1.225		1.100	1.080
_	2005			1.584	1.471		1.235	1.459)	1.513		1.401		1.125	1.124
_	2005			1.618	1.549		1.298	1.544		1.502		1.510		1.196	1.212
	2005			1.505	1.624		1.389	1.494		1.402		1.406		1.259	1.160
	2005			1.595	1.565		1.509	1.493	;	1.512		1.329		1.332	1.153
_	2005			1.561	1.432		1.428	1.426)	1.517		1.238		1.247	1.082
_	2005			1.697	1.696		1.715	1.590)	1.623		1.533		1.383	1.240
	2005			1.495	1.787		1.717	1.673	;	1.442		1.646		1.403	1.307
	2005		_	1.439	1.830		1.721	1.750)	1.404		1.665		1.477	1.374
	2005	10	_	1.154	1.393		1.669	1.574	1	1.118		1.264		1.387	1.132
	2005	11		1.118	1.205		1.635	1.492	2	1.142		1.147		1.369	1.051
	2005	12		1.010	0.987		1.515	1.375	i	1.131		1.043		1.289	0.995

			ARIMA				_VARd h				VARn h			
	mes	real	h=1	h=3	_h=6	 _Dinam _	h=1	_h=3	_h=6	_Dinam _	h=1	h=3	h=6	 Dinam
2004		0.157												
2004		0.163												
2004		0.163												
2004		0.164												
2004		0.165												
2004	4 6	0.147												
2004	4 7	0.130	0.162			0.162	0.147			0.147	0.139			0.139
2004		0.129	0.120			0.164	0.123			0.153	0.127			0.14
2004		0.129	0.133	0.166		0.166	0.131	0.158		0.158	0.134	0.147		0.14
2004	4 10_	0.129	0.131	0.116		0.170	0.130	0.122		0.162	0.132	0.135		0.154
2004	4 11_	0.131	0.132	0.145		0.176	0.132	0.138		0.165	0.134	0.148		0.16
2004	4 12_	0.132	0.131	0.138	0.177	0.177	0.132	0.135	0.166	0.166	0.133	0.144	0.165	0.16
200:	51_	0.131	0.134	0.135	0.123	0.179	0.133	0.136	0.132	0.167	0.134	0.143	0.154	0.16
200:	52	0.130	0.131	0.136	0.153	0.182	0.130	0.134	0.142	0.167	0.131	0.140	0.158	0.16
200:	53_	0.130	0.127	0.136	0.143	0.182	0.129	0.133	0.136	0.165	0.129	0.138	0.152	0.16
200:	5 4	0.133	0.131	0.130	0.139	0.183	0.131	0.127	0.135	0.164	0.131	0.132	0.149	0.16
200:	55_	0.134	0.135	0.127	0.137	0.183	0.134	0.131	0.134	0.165	0.135	0.134	0.145	0.16
200:	56	0.138	0.125	0.124	0.128	0.182	0.128	0.126	0.128	0.160	0.129	0.130	0.139	0.15
200:	5 7_	0.139	0.141	0.119	0.113	0.182	0.142	0.122	0.118	0.156	0.141	0.128	0.130	0.15
200	5 8	0.140	0.139	0.116	0.109	0.183	0.139	0.125	0.123	0.158	0.139	0.130	0.134	0.15
200:	5 9	0.139	0.141	0.144	0.115	0.184	0.142	0.147	0.124	0.160	0.142	0.145	0.136	0.15
200:	5 10	0.139	0.138	0.139	0.118	0.186	0.138	0.144	0.126	0.161	0.139	0.144	0.137	0.16
200:	511	0.142	0.140	0.142	0.117	0.188	0.141	0.147	0.131	0.164	0.141	0.147	0.141	0.16
200:	5 12	0.143	0.144	0.139	0.145	0.189	0.143	0.140	0.150	0.165	0.143	0.142	0.148	0.16

Preci	o maíz aş	gregado na	acional (P	om_nac)															
				ARIMA_				_VARd h				_VECM h _				_VARn h			
_año		mes	real	h=1	_h=3	_h=6	_Dinam _	h=1	_h=3	h=6	Dinam	_h=1	_h=3	h=6	_Dinam	_h=1	h=3	_h=6	Dinam
	2004_	_ 1_	0.174																
	2004_	2	0.175																
	2004_	_ 3_	0.175																
_	2004	_ 4_	0.178																
	2004	5	0.181																
	2004	6	0.176																
	2004	7	0.173	0.173			0.173	0.173			0.173	0.174			0.174	0.174			0.174
	2004_	8	0.170	0.174			0.174	0.172			0.175	0.172			0.176	0.173			0.176
	2004_	9	0.154	0.169	0.175	•	0.175	0.165	0.175		0.175	0.164	0.176		0.176	0.166	0.178		0.178
	2004_	10_	0.140	0.147	0.178		0.178	0.145	0.164		0.170	0.145	0.163		0.171	0.146	0.167	•	0.174
	2004_	11	0.137	0.137	0.174		0.181	0.135	0.156		0.169	0.136	0.154		0.169	0.137	0.159		0.172
	2004	12	0.136	0.137	0.151	0.183	0.183	0.137	0.144	0.169	0.169	0.136	0.145	0.170	0.170	0.138	0.153	0.171	0.171
	2005_	1	0.135	0.135	0.138	0.184	0.184	0.137	0.134	0.166	0.171	0.136	0.136	0.162	0.172	0.138	0.144	0.165	0.172
	2005	2	0.134	0.136	0.138	0.176	0.184	0.135	0.138	0.159	0.171	0.134	0.134	0.154	0.172	0.136	0.144	0.157	0.171
	2005_	3	0.135	0.133	0.135	0.152	0.184	0.133	0.138	0.145	0.170	0.132	0.133	0.143	0.170	0.134	0.143	0.154	0.170
	2005_	_ 4_	0.137	0.136	0.136	0.139	0.185	0.137	0.135	0.134	0.171	0.135	0.132	0.132	0.171	0.137	0.140	0.152	0.170
	2005_	5	0.137	0.138	0.134	0.139	0.186	0.139	0.136	0.139	0.172	0.137	0.132	0.132	0.172	0.139	0.141	0.150	0.170
	2005_	6	0.141	0.136	0.136	0.135	0.184	0.137	0.139	0.140	0.172	0.136	0.134	0.133	0.171	0.138	0.142	0.151	0.170
	2005_	_ 7_	0.143	0.144	0.136	0.135	0.183	0.145	0.140	0.138	0.172	0.143	0.135	0.132	0.172	0.146	0.142	0.149	0.171
	2005	8	0.145	0.143	0.135	0.132	0.184	0.148	0.142	0.139	0.175	0.146	0.139	0.133	0.174	0.148	0.145	0.150	0.173
	2005	9	0.143	0.145	0.142	0.133	0.184	0.141	0.148	0.140	0.174	0.142	0.144	0.135	0.174	0.142	0.150	0.147	0.174
	2005	10	0.143	0.141	0.140	0.131	0.185	0.138	0.142	0.135	0.170	0.138	0.141	0.132	0.169	0.141	0.146	0.140	0.169
	2005	11	0.145	0.145	0.143	0.130	0.186	0.147	0.132	0.134	0.169	0.145	0.133	0.132	0.168	0.147	0.137	0.141	0.168
	2005	12	0.146	0.145	0.140	0.140	0.187	0.146	0.142	0.143	0.169	0.145	0.140	0.139	0.169	0.146	0.148	0.144	0.168

Anexo 3

Vacuno a) Pov_nac	Pov_al Pov_	_fr				
DLS0797	DLS1297	DLS0398	DLS1100 DLS1101	DLS1200	DLS0101	DLS0301
DLS0501 DAO1102	DLS0701 DLS0104	DLS1001 DLS0304	DLS1101 DLS0404	DLS1201	DTC0502	DAO0602
b) Pov_nac	Pcv_nac					
DLS1297 DLS1201	DLS0398 DTC0502	DLS1100 DAO0602	DLS1200 DAO1102	DLS0201 DAO0803	DLS0501 DLS0104	DAO1001 DLS0304
	Pov_al Pov		DA01102	DA00003	DL30104	DL30304
DLS0797	DLS1297	_n DLS0398	DLS1098	DLS0399	DLS0799	DLS0600
DLS1100	DLS1200	DLS0101	DLS0301	DLS0401	DLS0501	DLS0701
DLS0801 DAO0603	DLS1101 DLS0104	DLS1201 DLS0304	DLS0602 DLS0404	DLS1002	DLS0503	DAO1102
d) Poa_lbir	Pcv_nac					
DLS1100 DLS1002	DLS1200 DAO0603	DLS0501 DLS0304	DLS0201 DLS0104	DLS0801 DLS0204	DLS1001	DLS1201
DLS1002	DA00003	DL30304	DL30104	DL30204		
Ovino a) Poo_nac	Poo fr					
DLS0497	DTC0298	DLS1200	DLS0201	DLS0102		
b) Poo_nac	_					
DTC0298	DLS0898	DLS0201	DLS0102	DTC0502		
c) Poo_eb l DLS0497	Poo_fr DTC0298	DLS1200	DLS0201	DLS0102		
d) Poo_eb		D1 G1300	D1 00001	D1 00102	D#G0502	
DLS0497	DTC0298	DLS1200	DLS0201	DLS0102	DTC0502	
Porcino	D (D					
a) Pop_nac DLS0497	Pop_fr Pop_ DLS1297	_hol				
b) Pop_nac	Pcp_nac					
DAO0597	DLS1297	DLS0699	DLS0301	DAO1001		
Pollo						
a) Popl_nac DLS1297	e Popl_fr DLS0104	DLS1200	DLS1003			
b) Popl_na		DL31200	DL31003			
AO0597	c i cpi_nac					
Cebada						
DLS0997	DLS1103	DAO0604				
Maíz						
DLS0900	DTC0801	DLS0903	DLS1003	DTC1103		